

2020 Zooming Innovation in Consumer Technologies
Conference (ZINC)

Online, 26-27 May 2020

ISBN: 978-1-7281-8259-9

IEEE Catalog Number: CFP20ZIN-ART

www.GoZinc.org

Design and Implementation of Cluster Based Parallel

System for Software Testing

Jovan Milojković

Department of Computer Science

Faculty of Electronic Engineering

Nis, Serbia

jovan.milojkovic@elfak.ni.ac.rs

Vladimir Ćirić

Department of Computer Science

Faculty of Electronic Engineering

Nis, Serbia

vladimir.ciric@elfak.ni.ac.rs

Dejan Rančić

Department of Computer Science

Faculty of Electronic Engineering

Nis, Serbia

dejan.rancic@elfak.ni.ac.rs

Abstract— In a new era of technology, reducing process

execution time using multiple hardware components is a trend. In

order to reduce cycle time in software delivery smarter

deployment pipeline strategies should be considered, as well as

parallel builds and parallel testing strategies. In this paper we

propose a system that parallelizes software testing within the

deployment pipeline. The proposed system increases hardware

used for the process execution and reduces time needed for testing

of a developed software product. Docker will be used for the

system implementation. Parallelization will be achieved at process

and container levels. Furthermore, in this paper we show how

parallelization using containers and processes affects time needed

for test execution of a developed software product.

Keywords— container, Docker, parallel systems, software

testing, deployment pipeline, continuous integration

I. INTRODUCTION

In this part of the paper some basic concepts and terms will
be defined. Cycle time is a unit of time which passes when a
decision is made that a change should be introduced in a
software product until that change is implemented in the
production. The deployment pipeline process tries to reduce this
time. Deployment pipeline is automated implementation of
build, test, deploy and release of software product [1].
Deployment pipeline presents a set of stages through which the
system that is being developed goes through.

Continuous Integration is a methodology which states that
after every change to a product, the product should go through
Deployment Pipeline process [2]. If there is an error in any of
the phases of Deployment Pipeline, team which made the error
should resolve it as soon as possible. Continuous Integration can
be implemented on a team as a set of rules which every team
member should respect.

Product testing is a part of Verification and Validation
process [3]. Validation is a process in which the product is
checked that it does what customer imagined, while Verification
is a process which checks if the product is made according to its
requirements specification.

Product testing can be done manually or it can be done
automatically. In manual product testing, a person manually
goes through checklist from documentation and checks whether
or not the point in checklist is implemented and is functioning
properly. In automated testing, the test cases are run over a
product and their results are gathered at the end.

There are many tools that encourage automated software
testing [4]. The most widely used tools include Bamboo,
Jenkins, CruiseControl, Sysphus, etc. However, they do not use
parallelization techniques while running tests for software
products. In the methodology of Continuous Integration and
Deployment Pipeline, which mentioned tools use, everything is
sequential.

In this paper the parallelization of automated testing in
deployment pipeline is proposed. A system for parallel software
testing will be implemented on cloud using containers, namely
Docker. Parallelization will be achieved at process and container
levels. Parallelization techniques used in the proposed system
will be described further and their comparison will be given. The
architecture of the system will be evaluated. The implementation
results that show how parallelization using containers and
processes affects time needed for test execution of a developed
software product will be given. The price paid for reducing the
testing time is increased hardware usage.

II. DEPLOYMENT PIPELINE AND SYSTEM TESTING

 In order to be able to design a system for parallel software
testing, in this section Deployment Pipeline and some general
software testing methodologies and their usage will be
discussed.

 As mentioned earlier, software testing [3] is a part of
Verification and Validation process. The main goal of a test [5]
is to find the errors in the system that is being tested. While
running tests on some product, we can make descriptions of how
a certain part of system, or whole system performs.

 In general, there are three testing strategies: White Box,
Black Box and Gray Box [6], [7]. White Box testing is a testing
in which we write tests knowing the internal structure of the
product we are testing. Black Box testing examines the
functionalities of the product, without the knowledge of how the
product is implemented. Gray Box testing is strategy in which
both Black Box and White Box strategies are combined. In
proposed system, only functional Black Box tests are written.

 While writing automated tests, tests cases should be
provided. Each test case should then be written as a program and
run to test the product. One run of test case consists of starting a
software product, getting it into a desired state (or getting some
of its components in some desired state), running a set of
commands on the desired state, gathering results and checking

978-1-7281-8259-9/20/$31.00 ©2020 IEEE 276Authorized licensed use limited to: Carleton University. Downloaded on September 19,2020 at 07:58:45 UTC from IEEE Xplore. Restrictions apply.

the gathered results with the test case results. It can be observed
that one test case is fully sequential, so no parallelism should be
introduced here.

 Deployment Pipeline represents automated manifestation of
getting the product from some version control system through
build and test phase. At the end the product can be released. It
can be said that Deployment Pipeline is one instance of the given
process. The Deployment Pipeline process and its phases are
shown in Fig. 1. They depend on the organization in which the
process is implemented. This means that the process can be
divided in more phases or merged in less, but the view in Fig. 1
gives a general picture of it. All phases do not need to be run
every time a change happens, but the Continuous Integration
methodology states that at every stage whole product should go
through Deployment Pipeline. Several Deployment Pipelines
can be run in parallel so that several versions of product can be
tested.

Fig. 1. Deployment Pipeline Process

 It can be observed that the process consists of 5 phases. In
the first phase, the Commit stage, the change in the product is
made, and the process of building the software product is
initialized. Code analyzer tools are run. At the end of the stage a
set of unit tests are run. Running unit tests can be another phase.
However, in Fig. 1 they are all integrated into the Commit Stage.
The reason is because they should be run every time a change
happens in the underlying code. If the product passes the initial
stage (we say that the product passes the stage if and only if all
tests did not recover any bugs), then Automated Acceptance
Testing starts (Fig. 1). If the product passes this stage then
Automated Capacity testing begins, etc.

 In this paper we deal with the stages where automated tests
are executed, because they can be executed in parallel. This
means that testing with automated tests in one deployment
pipeline process can be parallelized, and therefore, its run time
can be shorter.

 There are many tools for software testing, like Bamboo,
Jenkins, CruiseControl, Sysphus, etc [4]. All this tools can run
several deployment pipeline processes from Fig. 1 in parallel,
but as a whole. However, they do not use parallelization
techniques while running tests in one deployment pipeline
instance. When a branch gets through the process, the process of
automated testing of that branch is linear. Furthermore, in many
cases branch is always build from the begging. The system
proposed here parallelizes the testing of a product inside one
branch.

 In order to parallelize a deployment pipeline instance, in the
following section we will examine the possible parallelization
strategies.

III. PARALLELIZATION TECHNIQUES

We propose the processes and containers as parallelization
techniques. Both techniques ensure that several test cases can be
run in parallel. In both techniques whole test suit will be divided
into disjoint test suits, which can be run in parallel.

A. Processes

Parallelization using processes consists of dividing the test

cases into groups and running them in parallel throughout

different processes. One process can execute a group of given

tests in sequence, which enables execution of one test group per

process, where several processes can be executed in parallel.

For this case a scheduler of tests is required, who will

distribute the test cases to different parallel processes. One

scheduler should control several processes. Processes can be

run in parallel on one node (multicore) or on several nodes.

Depending on number of nodes in the system, the scheduler

architecture and its responsibilities varies.

Involving containers for process control in one node only

the scheduler can be simplified.

B. Containers

Docker Containers can be used to encapsulate several
processes along with accompanied scheduler and executed there
on one node. Involving containers simplifies parallelization on
cluster of nodes and inherently gives another level of
parallelization. In order to be able to distribute tests to containers
a master scheduler should be involved. The master scheduler can
pass environment variables, so that every container in its
configuration knows the total number of containers in the system
and which tests it should run.

The tests cases that are run on containers represent the
disjoint group of tests. Every container has its own test cases.
Furthermore, in each container parallelization technique with
processes is used, so the group of tests that are run inside a
container are further parallelized with processes, giving us two
levels of parallelization: containers and processes.

IV. DESIGN AND IMPLEMENTATION OF THE PROPOSED SYSTEM

In this section the architecture of the proposed system and
the design of Docker container image will be discussed.

 The system consists of several components as shown in Fig.
2. The system is divided in 3 parts: Application that is being
tested, Test Framework (library of classes and functions for
tests) and the Scheduler (scheduler for process level parallel
testing). For the sake of illustration, we choose to test the
standard calculator application (Fig. 2). Architecture shown in
Fig. 2 enables implementation using previously mentioned
process parallelism technique. With the containerization of
whole architecture from Fig. 2, the container techniques
parallelization is applied.

In order to evaluate the system every component of the
system has a logger component which logs the time of the

277Authorized licensed use limited to: Carleton University. Downloaded on September 19,2020 at 07:58:45 UTC from IEEE Xplore. Restrictions apply.

system when the action is performed. Containers have their start
and end time, and components inside the containers log their
time as well. After the container finishes its job, the logs are
gathered. All logs display time in nanoseconds.

A. Application that is being tested

Application that is being tested for is standard calculator
application. It has some of the functionalities of the calculator
applications we see broad wide. The TCP connection is used to
communicate with the calculator, and to receive the feedback
(Fig. 2).

B. Test Framework

The Test framework consists of several components. We

will show this part of the system by using Bottom-Up approach.

In the bottom there is a component that is used to

encapsulate calculator application for the testing purposes (Fig.

2). It can send and receive data from calculator application, start

it and end it. Command class represents a generalization of

commands that can be executed on calculator.

Next is a test generalization and abstraction (Fig. 2). Test

consist of calculator application that will be started and

commands that can be sent to it. Furthermore, it contains an

abstraction of test workflow: start application, send commands,

gather results and check results. TestCase specializes Test and

contains one test case that should be run. In Fig. 2 TestCase is

shown as one component, and there is a component called Test

Cases which consists of all TestCases written. The Test Cases

represent all tests that will be run while testing the product. A

configuration of all test cases is in configuration file

tests.config. This file contains all the test cases that will be run

in one deployment pipeline.

C. Python Scheduler

The Python scheduler makes parallelization possible. This

component splits tests depending on the environment

configuration, and run test cases in parallel.

It consists of the Server which splits the tests and knows

which processes should run which group of the tests (Fig. 2).

The Server knows about the tests because it has access to

tests.config file. Server can be additionally fine-tuned by using

the environment configuration. Server has its handlers, where

each handler is a thread, and one handler handles one process.

One process is implemented by one client (Fig. 2), which

connects to the server to gather the configuration and group of

tests that it should run. One client run in sequence test cases that

it got from server, as described in the previous section.

Clients and server are started with the script. Only one

server exists, but the number of clients dictates the number of

parallel processes which are testing the software product in

parallel.

D. Containerisation

The image that will be run in the Docker container is the

image of the whole system from Fig. 2 giving us another level

of parallelism. Through the environment configuration the

parameters of the process parallelization are being

communicated to the container. Here the tests cases are split to

groups and each group of tests goes to one container.

Furthermore, each split group is divided to processes in

containers so that the process parallelization is obtained inside

each container. When a container starts, it gets the

configuration from environment and runs the Server and Clients

from the Python Scheduler. In each container the branch that is

given to it can be built, but if it is already built, build files can

be used for testing the product. The current implementation

uses Docker Swarm [8] scheduler for the scheduling of the

containers to cluster nodes.

Fig. 2. Architecture of the proposed system for parallel software product testing

V. IMPLEMENTATION RESULTS

The proposed system was implemented and evaluated on a

cluster of several nodes. The cluster consisted of 3 physical

servers with 6 physical processors (Intel Xeon CPU_E5603 @

1.6 GHz). 24 logical processors, and 334 GB of RAM memory

in total. The operating system run on physical machines is

VMware ESXi 5.5.0. Docker and Swarm are installed on 10

virtual machines. All virtual machines were the same. They

were running Ubuntu 16.04. They had 2 logical CPUs and 8GB

of RAM each.

On all virtual machines NTP [9] was installed so that the

time measurement could be done properly. Regarding

containers, no resource constraints were used on them, so they

can use the resources as much as they need.

Three types of measurements were made. The

measurements are labeled using the following pattern: “X_N,

278Authorized licensed use limited to: Carleton University. Downloaded on September 19,2020 at 07:58:45 UTC from IEEE Xplore. Restrictions apply.

X_K, X_C, X_T”. X_N is the number of nodes in the

measurement, X_K is the number of containers, X_C is the

number of client processes inside the container, while X_T

stands for the number of tests run by a container. “X” in the

measurement means that that parameter varies throughout the

evaluation. The y axis in all given results stands for execution

time in nanoseconds [ns], while x axis represents different

measurement patterns [p].

The first performed evaluation for a measurement pattern

“10N, 1K, X_C, 72T” and it is shown in Fig. 3. Here the

parallelization technique using processes is shown. It can be

observed that the time needed to test the whole test cases of 72

tests gradually declines while the number of processes in

system increases. In this measurement pattern the number of

clients (X_C) in measurements goes: 1C, 2C, 3C, 4C, 6C, 8C,

9C.

The second evaluation is a measurement pattern “10N,

X_K, 1C, X_T”. This evaluation can be seen in Fig. 4. Here the

total number of test cases in every measurement is constant 72.

In this measurement the parallelization using containers only is

displayed. The measurement parameters regarding containers

and tests “K/T” go: 1K/72T, 2K/36T, 3K/24T, 4K/18T,

6K/12T, 8K/3T and 9K/8T.

Fig. 3. Measurement “10N, 1K, X_C, 72T”

Fig. 4. Measurement “10N, X_K, 1C, X_T”

The third evaluation is a measurement pattern “10N, X_K,

X_C, X_T” and it is shown in Fig. 5. In this measurement the

number of test cases is constant 72. The parallelization with

clients throughout this measurement is gradually replaced with

the parallelization by containers. The measurement parameters

“K/C/T” go: 1K/24C/72T, 2K/12C/36T, 3K/8C/24T,

4K/6C/24T, 6K/4C/12T, 8K/3C/9T, 12K/2C/6T and

24K/1C/3T. It can be observed that in this measurement one

client always runs 3 test cases in sequence.

In the first evaluation from Fig. 3 it can be noticed that

saturation is reached when more than 4 clients are run in one

container. This is related with the number of cores per

processor. In the third evaluation from Fig. 5, it can be observed

that it is better to use more clients than more containers, but

only to some point. The first and the last measurement are

significant because they show that it is better to have less

containers and more processes inside them. Furthermore, in this

evaluation the best result was the measurement with id 3, which

shows that parallelization is the most productive when both

parallelization techniques are being used, with the respect of the

cluster configuration.

Fig. 5. Measurement “10N, X_K, X_C, X_T”

VI. CONCLUSION

In this paper the concepts of Deployment pipeline were

presented and their improvements regarding parallelization of

testing was proposed. Techniques used for parallelization were

presented in detail. The architecture of proposed cluster based

parallel system for software testing is proposed and evaluated.

The evaluation show that the best results were achieved with

the compromise between parallelization using processes and

parallelization using containers, with the respect to cluster

configuration.

REFERENCES

[1] Humble, Jez, and David Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, Pearson
Education 2020

[2] Paul M. Duvall, Steve Matyas, Andrew Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, Pearson Education, 2007

[3] Sommerville Ian, Software engineering 9th Edition, ISBN -10
137035152, 2011

[4] Mojtaba Shahina, Muhammad Ali Babara, Liming Zhub, Continuous
Integration, Delivery and Deployment: A Systematic Review on
Approaches, Tools, Challenges and Practices, CREST – The Centre for
Research on Engineering Software Technologies, The University of
Adelaide, Australia, Data61, Commonwealth Scientific and Industrial
Research Organisation, Sydney, NSW 2015, Australia

[5] Myers, Glenford J., Corey Sandler, and Tom Badgett, The art of software
testing, John Wiley & Sons, 2011

[6] Jovanovic Irena, Software testing methods and techniques, The IPSI BgD
Transactions on Internet Research 30, 2006

[7] Jan, Syed Roohullah, et al., An innovative approach to investigate various
software testing techniques and strategies, International Journal of
Scientific Research in Science, Engineering and Technology (IJSRSET),
Print ISSN (2006): 2395-1990

[8] Swarm mode overview, https://docs.docker.com/engine/swarm/, Docker
Documentation, Date Accessed: May 7 2020, Date Published: May 4
2020

[9] NTP: The Network Time Protocol, http://www.ntp.org/, Website Title:
ntp.org: Home of the Network Time Protocol, Date Accessed: May 07,
2020

279Authorized licensed use limited to: Carleton University. Downloaded on September 19,2020 at 07:58:45 UTC from IEEE Xplore. Restrictions apply.

