

2020 Zooming Innovation in Consumer Technologies
Conference (ZINC)

Online, 26-27 May 2020

ISBN: 978-1-7281-8259-9

IEEE Catalog Number: CFP20ZIN-ART

www.GoZinc.org

Design and Evaluation of Proof of Work Based

Anti-Spam Solution

Nadja Gavrilovic
University of Nis, Faculty of Electronic Engineering

Nis, Serbia
nadja.gavrilovic@elfak.ni.ac.rs

Vladimir Ciric
University of Nis, Faculty of Electronic Engineering

Nis, Serbia
vladimir.ciric@elfak.ni.ac.rs

Abstract—According to recent reports, most of the overall

email traffic consists of spam, which represents an abuse for the

purpose of mass distribution of unwanted messages. Spam can

lead to serious attempts at a data breach or email consumer’s

identity theft, also. There are a lot of different anti-spam

solutions. The aim of this paper is to design and evaluate an anti-

spam solution based on a novel Proof of Work concept. The

proposed solution requires a certain amount of work from a

sender prior to the transfer of an email message. The extended

SMTP protocol will be designed in order to enable the

evaluation of client credibility using the Proof of work

algorithm. The design of the proposed solution will be presented

in detail. The implemented system will be evaluated in

distributed spam attempt, simulated by Seagull tool. An

evaluation of the client work, the impact on the overall amount

of sent spam messages, as well as the impact of distributed spam

attempt on the attacked server resource usage will be shown. We

will show that the proposed solution helps in reducing spam

traffic and server load, while it doesn’t diminish the consumer
experience of legitimate email users.

Keywords—proof of work, anti-spam, spam, email, smtp, pow

I. INTRODUCTION

A report published in [1] from March 2020 indicates that
the number of globally sent email messages in a single day is
as high as 306 billion, with a predicted growth of ~55 billion
over the next four years. Approximately 50% of the total
traffic is spam [1]. Spam represents the abuse of electronic
systems and SMTP protocol for the purpose of sending mass
unwanted messages. Usually these messages contain
advertising content, but they can also contain viruses, various
attacks on the consumer’s computer, attempts at a data breach,
etc. The basic feature of spam which makes it easy to use and
very widespread is that sending a single email message does
not represent a significant loss to the sender, either in terms of
time, or financially. That is why sending a great number of
messages of this kind is almost completely free.

The idea of pricing for every access to a shared resource,
presented in [2], induced development of today’s Proof of
Work (PoW) systems. PoW introduces the concept of
requiring a certain amount of client work prior to accessing a
shared resource. In the case of fighting spam, that would
require processing time prior to sending an email. Execution
of cryptographic hash functions represents a way of investing
sufficient processing time as proof of credibility. Recently, the
use of PoW concept in various systems has been studied
[3],[4],[5]. Implementation of PoW algorithm as an extension
of SMTP protocol was discussed in [6].

The goal of this paper is to design an anti-spam solution
based on a novel Proof of Work concept and evaluate the
server load during distributed spam attempt. The proposed
solution requires a certain amount of processing time from a
potentially invalid sender, prior to the transfer of an email

message. The implementation of such a system requires a
SMTP protocol extension, which implies certain changes in
client/server protocol defined communication. Protocol
extension will be designed in order to enable the evaluation of
client credibility using the Proof of work algorithm.

The design of the proposed solution will be presented in
detail. The implemented system will be evaluated in
distributed spam attempt, simulated by Seagull trafic
generator tool. The distributed spam attempt will be
performed by 10 nodes, thus simulating multiple clients and
their simultaneous requests to the server. An evaluation of the
client processing time, the impact on the overall amount of
sent spam messages, as well as the resource usage of an SMTP
server overloaded by requests of multiple clients will be
shown. We will show that the proposed solution helps in
reducing the spam traffic amount and server resource usage
during the distributed spam attempt.

II. RELATED WORK

The initial idea of requiring a feasible amount of work
when accessing a desired resource was first presented in [2].
In [7], a theory was presented that the PoW system of its own
cannot be used to fight spam, due to its impact on legitimate
email users. As a response to the findings pointed out in the
aforementioned paper, [8] presents the idea of using reputation
systems within the PoW system. Numerous papers were
published which studied the implementation of this algorithm
in various systems [3],[4],[5]. The common feature of all PoW
based systems is the protection of access to shared resources.
The PoW concept significantly gained in popularity when the
concept of the Bitcoin cryptocurrency, which relies on the
PoW system, was presented in 2008.

In [3] the authors suggested the use of the PoW concept in
anti-spam solutions. They studied the implementation of a
PoW anti-spam system on a Peer to Peer (P2P) network and
evaluated its performance. The system from [3] differs from
the system proposed in this paper in terms of how the amount
of work required from the client is determined. In [3] the
amount of work depends on the message itself, while in the
proposed system it depends on the decision of the SMTP
server. Unlike the P2P system, the proposed anti-spam
solution is based on client/server communication.

III. BACKGROUND

In order to be able to design PoW based SMTP protocol,
in this section we give a brief overview of basic SMTP
protocol, as well as the basic concept of PoW systems.

The SMTP protocol defines rules for sending and reliable
transfer of email messages through the network. The devices
taking part in the transfer itself are referred to as agents and
their communication is defined by the SMTP protocol. The

978-1-7281-8259-9/20/$31.00 ©2020 IEEE 286

basic communication between the SMTP client and server
during the successful transfer of a message is as follows [9]:

S: 220 smtpServer.example.com

C: HELO smtpClient.example.com

S: 250 smtpClient.example.com, pleased to meet you

C: MAIL FROM:<from@example.com>

S: 250 Sender OK

C: RCPT TO:<recipient@example.com>

S: 250 Recipient OK
C: DATA

S: 354 Enter mail, end with \".\" on a line by itself

C: From: "From Example" <from@example.com>

C: To: Recipient Example <recipient@example.com>

C: Date: Tue, 03 March 2020 16:02:43

C: Subject: Hello

C: Hello world!

C: .

S: 250 Queued mail for delivery

C: QUIT
S: 221 Service closing transmission channel

 In the communication shown above, S stands for the
message that the server sends to the client, while C stands for
the client message sent to the server. An email transaction
begins with the command MAIL, which the client uses to
define the sender email address. The second step is the
definition of the recipient email address using the command
RCPT, etc. In the beginning of every server message there is
a three-digit numeric designation, which provides the client
with information on the success of client action [9].

PoW systems emerged with the aim of preventing abuse
of the processing power of a computer, for example during a
Denial of Service (DoS) attack. The basic idea behind this
concept is to request relatively small amount of processing
time from a device which tries to access protected resource.
This prevents the activity of the basic feature of the
aforementioned attacks – a large number of access attempts at
a resource over a short period of time [2].

The principle behind how a PoW system works is based
on a typical cryptographic scenario, during which one side that
takes part in the communication attempts to prove its validity
to the other. Specifically, the client who is requesting a service
or resource from the server should first prove its reliability.
This proof is realized through a certain amount of processing
time, with the aim of fulfilling the criterion issued by the
server [2].

Most often, carrying out mathematical or cryptographic
functions represents a way of investing sufficient processing
time as proof of credibility. Functions are not overly
demanding, but are complex enough to ensure, in the case
where their multiple execution is required, significant
processing time on the client side. The task of the client is to
solve time-intensive calculation involving certain data many
times over, until the obtained solution satisfies the
requirement issued by the server. Then, the client sends that
solution to the server. The task of the server is to check the
validity of the obtained solution and identify the client as
reliable or unreliable, based on the previous analysis [4].

IV. SYSTEM OVERVIEW

The idea proposed in this paper is the possibility of asking
a potentially invalid client for proof of credibility by requiring

certain amounts of processing time. In this way, without
impacting valid email users, the server can conclude whether
the client it is communicating with has the intention of abusing
the server. The implementation of such a system requires
certain changes in the implementation of the SMTP protocol.

At the beginning of the communication, the client provides
the server with information on the sender, recipient and
overall message being sent, as defined in the basic SMTP
protocol. The server, after it has received all the email data,
has the possibility of transferring the email message to its
destination, the same way it does in protocol-defined
communication in the case of a valid consumer. However, if
based on the evaluation of the sender, the reputation system
determines that the client might be unreliable, in this paper we
propose for SMTP protocol to require proof of credibility prior
to the transfer of the messages. With that aim in mind, changes
were made to the basic SMTP communication.

The changes enable the server to send integer value, which
represents the weight. Its value determines the criterion which
the client has to meet. By executing a cryptographic hash
function on the email message, the client must generate a
sequence which has as many zeroes in the beginning, as were
defined by the previously received weight parameter. By
changing the value of the weight parameter, the server could
require various amounts of processing work from various
clients.

The execution of the same hash function on the same data
sequence always results in the same output. That is why we
request from the client in the extended SMTP protocol to
append a nonce value to the email data, and then to calculate
the hash value of the whole sequence. The only way to
determine a nonce value which satisfies the requirement of the
server is brute force. The hash function is sequentially
executed several times, until the generated output meets the
server requirement, and with each function execution, the
value of the nonce increments. Bearing in mind that the feature
of a hash function is to provide drastic changes in the output
for small changes in the input, completely different values are
obtained with each execution of the function on the data.A
single execution of a hash algorithm on the data does not
require significant processing work, but obtaining a
satisfactory output sequence is sufficiently rare to enable the
overall process to take the client significant processing time.

Once the nonce value used to satisfy the issued
requirement is found, the client forwards it to the server. After
receiving the nonce value from the client, server checks it to
ensure if the obtained value meets the set requirement, that is,
whether the required amount of work has been put in. The
check is achieved on the server side through a single hash
function execution on the data sequence which consists of
previously obtained email message and recently received
nonce value appended to the email. This signals that a
significantly greater amount of CPU time is required to solve
the given problem on the client than the amount required to
verify the solution on the server. If the server determines that
the applied nonce value meets the set requirement, the client
is characterized as valid and email is successfully transferred.
However, if the nonce is not verified by the server, server
notifies the client that the email transfer has failed.

A valid consumer, unlike a client using spam, rarely sends
the server great many email requests over a short period of
time. Thus, even if the valid email consumer has been

287

incorrectly evaluated by a reputation system as potentially
dangerous, the processing time needed for an adequate
summary of a small number of emails will not render the use
of the email service more difficult. Thus, valid consumers’ use
of the server has not undergone any noticeable changes. The
complete client/server communication with the proposed
changes, is shown in the following:

S: 220 smtpServer.example.com

C: HELO smtpClient.example.com
S: 250 smtpClient.example.com, pleased to meet you

C: MAIL FROM:<from@example.com>

S: 250 Sender OK

C: RCPT TO:<recipient@example.com>

S: 250 Recipient OK

C: DATA

S: 354 Enter mail, end with \".\" on a line by itself

C: From: "From Example" <from@example.com>

C: To: Recipient Example <recipient@example.com>

C: Date: Tue, 03 March 2020 16:02:43

C: Subject: Hello
C: Hello world!

C: .

S: 250 Queued mail for delivery

C: QUIT
S: 221 Server closing connection

The emphasized part of the communication shows the
validation of the consumer. The server requires processing
time from the client as a potentially dangerous one. The value
of the parameter Challenge number 3 denotes that the client
must generate an output sequence which in the beginning had
precisely 3 zeroes. As previously described, the client through
multiple executions of the hash function on the email message
and the nonce value appended to it, attempts to generate an
output sequence which will satisfy the set requirement. In the
given example, the value of the nonce parameter is 79745. It
denotes that the email message, with the value of 79745
appended to it, composed the right sequence which met the
requirement given by the server.

V. PERFORMANCE MEASUREMENT AND ANALYSIS

The SMTP server with a PoW extension was implemented
using .NET Framework. The server was tested on an AMD
A10-5745M model processor, with a clock speed of 2.10 GHz.
Distributed spam attempt was simulated by a cluster of 10
SMTP clients, using the Seagull tool on each of them.

A. An evaluation of the client work

The amount of processing time required from a client has
been evaluated through multiple testing of various weight
values assigned by the server. The results presented in Table I
were obtained. With an increase in the values of the weight
parameter, the amount of required CPU time increases, and
can be significant (Table I). The precise CPU time varies
depending on the speed of the client processor, its usage and
the probability function, which determines the precise step
during which the desired value will be obtained. The value of
the standard deviation is significant for each of the weight
values, and the reason are the great deviations in the amount
of client work, precisely because of the previously discussed
probability function.

TABLE I. AN EVALUATION OF THE CLIENT WORK FOR VARIOUS WEIGHTS

Weight

Average time

needed to

perform the

function

Standard

deviation of

the

performance

time

Average

number of

performed

hash

functions

Number of

completed

tests

1 1.14ms 0.41ms 41 20

2 28.7ms 25.09ms 1728 20

3 4.35s 2.88s 223620 20

4 2.71min 1.81min 10996000 20

B. The impact on the amount of sent spam messages

Hash Power (HP) parameter represents the average
number of executions of hash function per second, that a CPU
can perform. The testing has shown that the number of client
hash function executions per second per individual request
decreases from HP, with an increase in the number of
simultaneously sent requests from a single client due to its
CPU overload. Testing results can be seen in Fig. 1. A direct
consequence is the increase in the duration of the individual
client/server connection, during which the client CPU is
overloaded. How long each individual request will last
depends on the number of simultaneously opened
connections, as shown in Fig. 2.

Fig. 1. The number of client hash function executions per second per

individual request depending on the number of simultaneously sent requests.

Fig. 2. The average duration of a client-server connection depending on the

number of simultaneously sent single client requests.

A consequence of the displayed results is that the number
of possible client outbound emails per second does not depend
on the number of sent requests from the client per second. It
depends only on the value of the weight given by the server
and the HP parameter, as

 NeHP / H (T), 

where Ne is the number of outbound messages from the client
per second, HP is the hash power of the client, T is weight
parameter, and H(T) is the average number of required
executions of the hash algorithm for the weight T.

S: 250 Challenge number 03

C: Nonce : 79745

288

For a weight value of 3, the average number of executed
hash functions shown in table I and the HP of the
aforementioned processor, according to (1) the number of sent
client messages per second is 0.345. By testing the
implemented system for various numbers of client requests
per second, results were obtained and are shown in Fig. 3.

Fig. 3. The number of emails sent from a single client per second, depending

on the number of sent client requests, without and with CPU work requested

Based on the presented results, we can conclude that a
client with the intention of abusing the email server is limited
to a constant number of sent emails per second, irrespective of
the number of requests sent. Using the weight value of 3 limits
the speed of sending spam messages, which reduces the
number of messages of that kind on the network. In the case
where CPU time is not requested from the client, that is, where
the value of the weight is 0, the client sends approximately the
same number of emails as requests sent to the server, and the
email is sent almost instantaneously.

C. The evaluation of email server resource usage during

distributed spam attack

By testing the client CPU usage depending on the number
of simultaneously sent requests for sending an email, while
using weight value of 3, the results presented in Fig. 4 were
obtained. The sequential execution of hash functions
overloaded the tested client CPU to 100% in the case of 30
simultaneously sent emails.

Fig. 4. Client processor usage depending on the number of simultaneously

sent requests.

The implemented SMTP server load was tested during the
distributed spam attempt, simulated by a cluster of 10 clients.
Server load was evaluated by varying the number of clients
sending requests at the same time. Each computer used the
Seagull tool to simultaneously send 30 email requests, which
the server accepted and processed. With 30 opened
connections with the server, the CPU overload for all the
clients was 100%. The average CPU usage of the SMTP
server during the first 180 seconds after accepting all the
connections was monitored. The result is shown in Fig. 5.

Fig. 5. Server processor usage depending on the number of clients

simultaneously sending requests, with each client processor usage of 100%.

We can conclude that the CPU usage of the implemented
server was not greatly affected by the distributed spam
attempt. Also, by limiting the speed of sending spam
messages, proposed solution affects the most pronounced
feature of spam – sending out a large number of email
messages over a short period of time. By reducing overall
spam traffic and conserving server load, consumer
technologies which use email services (e.g. mobile mail
clients and applications) can be used with less disturbance and
security threats for valid consumers.

VI. CONCLUSION

In this paper we designed and evaluated an anti-spam
solution based on a novel PoW concept. In order to enable the
evaluation of client credibility using the PoW algorithm, the
SMTP protocol extension has been designed. The proposed
system has been evaluated in distributed spam attempt,
simulated by Seagull tool. An evaluation of the client work,
the impact on the overall amount of sent spam messages, as
well as the impact of distributed spam attempt on the attacked
server load are shown. It is shown that the proposed solution
helps in reducing spam traffic and server load, while it doesn’t
diminish the consumer experience of legitimate email users.

ACKNOWLEDGMENT

This work was supported by the Serbian Ministry of
Education, Science and Technological Development [grant
number TR32012].

REFERENCES

[1] The Radicati Group Inc, Email Statistics Report, 2020-2024.

[2] C. Dwork, M. Naor, "Pricing via processing or combating junk mail",

In Proc. Of the 12th Annual International Cryptology Conference on
Advances in Cryptology, Springer-Verlag, Berlin, 1992, pp. 139–147.

[3] A. Schaub, D. Rossi, "Design and analysis of an improved bitmessage

anti-spam mechanism," 2015 IEEE International Conference on Peer-
to-Peer Computing (P2P), Boston, MA, 2015, pp. 1-5.

[4] A. Biryukov, D. Khovratovich, Equihash: Asymmetric Proof-of-Work

Based on the Generalized Birthday Problem, 2016.

[5] I. Bentov, Ch. Lee, A. Mizrahi, M. Rosenfeld, Proof of Activity:
Extending Bitcoin’s Proof of Work via Proof of Stake, y.

SIGMETRICS Perform. Eval. Rev. 42, 2014, pp. 34–37.

[6] N. Gavrilović, "Design and implementation of SMTP network protocol

extension for proof of client’s work", Proc. on IEEESTEC 12th student
projects conference, Faculty of Electronic Engineering, Niš, 2019, pp.

321-324.

[7] B. Laurie, R. Clayton, "Proof-of-work proves not to work", Workshop
on Economics and Information Security, 2004.

[8] D. Liu, "Proof of work can work", Fifth Workshop on the Economics

of Information Security, Indiana University, 2006.

[9] J. Klensin, "Simple Mail Transfer Protocol", RFC 5321, DOI
10.17487/RFC5321, October 2008

289

