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Abstract—For the last several years Cloud Computing is
becoming dominant technology for big data processing. Apache
Hadoop, as one of the frameworks for data storage and comput-
ing on the cloud, in the form of PaaS using MapReduce paradigm,
is widely adopted among both developers and researchers. Taking
into the account great importance of matrix multiplication in
computer science in general, the goal of this paper is development
of new MapReduce algorithm for matrix multiplication, which is
able to perform the multiplication in one iteration. The proposed
one iteration MapReduce algorithm is optimized by prearranging
the input data in such manner that matrix elements can be
fetched in sequential order. The proposed algorithm is presented
in detail. The implementation results are given. The results
obtained on the cluster with 20 nodes are discussed.

Index Terms—Distributed computing, Cloud computing,
Hadoop MapReduce, Matrix multiplication.

I. INTRODUCTION

The challenge that big companies are facing nowadays is
big data storage and processing. Google was the first that
designed a system for processing such data, which allows
overcoming the problems that appears with big amount of data,
while utilizing a fast local area network for data distribution
[1]. The crucial novelty was new programming model in
the form of MapReduce paradigm. MapReduce provides a
simple heterogenous model for storing and analyzing data in
heterogenous systems that can contain many nodes [1].

The MapReduce is a programming model for processing
large data sets. Application developers specify a Map function
that processes a (key, value) pair to generate a set of inter-
mediate (key, value) pairs and a Reduce function that merges
all intermediate values associated with the same intermediate
key [1].

Doug Cutting led the development of an open source version
of this MapReduce system called Hadoop, which in 2008
became independent Apache project. Soon after, Yahoo and
others showed a big interest in this solution. Today, Hadoop
is a core part of the computing infrastructure for a lot of big
companies, such as Yahoo, Facebook, LinkedIn, Twitter, etc
[2].
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When working with MapReduce on Hadoop cluster, par-
allelism, fault tolerance, data distribution and load balancing
are inherited from Hadoop system itself. It is also optimized
to handle big amounts of structured and unstructured data,
by using widely accessible and relatively chip computers for
performance gain.

Matrices are widespread and applicable in variety of cal-
culations. Large matrices can contain a big amount of data
(1.000.000 elements, and more), which should be stored and
processed. The amount of data within the matrix can be large,
making the matrix operations data intensive. In some cases
the most of the elements are equal to zero, so this feature can
be further exploited. If maximum of 5-10% of matrix is filled
up with non-zero elements, data can be assumed as a sparse
matrix. Since zero elements don’t affect multiplication, this
could be taken into account during algorithm design.

There are plenty of different ways for acceleration of matrix
multiplication. Some of them include parallel processing of
data, such as multiplication on systolic arrays [3] and many-
core architectures [4], and some include multiplication in
distributed environments like Hadoop [5], [6]. Two major
challenges that occur in all of them are: optimal matrix
storage, and efficient matrix multiplication. Regarding the
Hadoop storage, two main problems are data redundancy and
inefficient sequential input of matrix data. Current MapReduce
implementations usually have more than one MapReduce
iteration [5].

The goal of this paper is the development of new MapRe-
duce algorithm for matrix multiplication, which is able to
perform the multiplication in one iteration. In order to achieve
the goal of multiplication in one iteration, the data will be
prearranged in manner that matrix elements can be fetched in
sequential order. The proposed algorithm will be presented
in detail. The implementation results will be given. The
implementation results will be given. The results obtained on
the cluster with 20 nodes will be discussed.

The paper is organized as follows: Section 2 gives a
brief overview of MapReduce paradigm on Hadoop cluster.
In Section 3 existing solutions for matrix multiplication on
Hadoop are presented, while in Section 4 we propose a new
MapReduce algorithm for matrix multiplication optimized for
one iteration by data prearrangement. Section 5 is devoted to
the implementation results, while in Section 6 the concluding
remarks are given.

II. MAPREDUCE PARADIGM ON HADOOP CLUSTER

The central part of the Hadoop architecture is a cluster. It
represents a large collection of networked computers (hosts
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- nodes), containing data for processing. Collection of 20-
30 nodes, which are physically close and connected to one
switch, is known as rack. Therefore, Hadoop cluster consists
of collection of racks [7].

There are three types of nodes depending on their roles in
cluster:

1) Client host - loads data into the cluster, forwards MapRe-
duce job that describes the way of processing data, and
collects the results of performed job at the end.

2) Master node - monitors two key components of Hadoop:
storage of big data, and parallel executions of computa-
tions.

3) Slave node - performs actual data storage and comput-
ing.

As it is mentioned above, there are two main components
of Hadoop system:

• Distributed File System - Hadoop DFS (HDFS), used for
big data storage in cluster,

• MapReduce - framework of computing big data stored in
HDFS.

The HDFS is a layer above existing file system of every
node in cluster, and Hadoop uses its blocks to store input files
or parts of them. Large files are split into a group of smaller
parts called blocks (default block size is 64MB). Size of these
blocks is fixed, so it is easy to index any block within the file,
and because of that it is straightforward to use a file within
HDFS that can be bigger than any individual disk in cluster
[7].

Particular blocks of a file on HDFS can be replicated
in order to achieve some level of data redundancy. Blocks
replication on multiple nodes allow HDFS to be fault tolerant.
Specifically, if for example node N1 stops working, there are
more blocks that contain the same data as N1, and it allows
them to continue the computations. Attribute of Hadoop that
affects intensity of block replication is a replication factor,
that can be set in configuration files. The example HDFS with
replication factor 3 on 5 slave nodes is shown in Fig. 1.

Typical HDFS workflow has 4 parts: transferring input data
from Client host to HDFS, processing data using MapReduce
framework on the slave nodes, storing results by Master node
on HDFS, and reading data by Client host from HDFS.

In essence, MapReduce technique consists of two transfor-
mations that can be applied many times on input files [7]: Map
transformation, and Reduce transformation.

The Map transformation consists of Mt Mappers, or Map
tasks, and the Reduce transformation consists of Rt Reducers,
or Reduce tasks, where Mt and Rt are specified in system
configuration of Hadoop . During the Map transformation,
every Map task processes a small part of the input file and
passes the results to the Reduce tasks. After that, during the
Reduce transformation, Reduce tasks collect the intermediate
results of Map tasks and combine them in order to get the
output, i.e. the final result, as shown in Fig. 2.

During the execution of the Mapper, the Mapper calls a Map
function, which performs required computations. Precisely,
Map function transforms input dataset into the set of output
values (key, value). After that, intermediate data with the

same key are grouped and passed to the same Reduce function.
At the end, Reduce function summarizes all data with the same
key in order to get the final result. Every output file is intended
for specific Reduce task. (Fig. 2).
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Fig. 1. HDFS

Transformations of Map and Reduce functions look as
follows:

• Map :
(kin, vin) → list(kintermediate, vintermediate),

• Reduce :
(kintermediate, list(vintermediate)) → list(kout, vout),

where kin, kintermediate and kout are keys, while vin,
vintermediate and vout are values.

It should be mentioned that additional Shuffle and Sort
functions can exist between Map and Reduce functions, that
makes the job of the Reducer easier, by collecting all elements
with the same key [7].

Map task, or Mapper, begins when Client host sends parts
of the file that consist of data for processing to Mapper, e.g.
input splits. The size of the input split is fixed, which means
that the Client host doesn’t know an internal logical structure
of the input file. It means that the Client host splits input file
into byte sequences.

A single Mapper starts by reading an input split which had
been sent to it. Input splits are denoted as Input Split 1 to Input
Split 6 in Fig. 2. In order to generate (key, value) pairs, every
input split is parsed by one Map function. The key argument
of the Map function input is usually the offset of the line in the
input file, while the value argument is one line of input split.
After that, specific Mapper performs certain operations on the
data and generates output (key, value) pairs (Fig. 2). The
Mapper should generate (key, value) pairs in such manner
that several pairs with the same key can be grouped on the
same Reducer.

As an addition to the Mapper, there is a Combine function
(Combiner), which can be used to offload a part of the
Reducer’s job to the Mapper. In fact, if MapReduce uses
Combiner, output pairs of Map function are not written on the
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output immediately, but rather collected into the lists within the
memory - one list for every key value, and further processed
by Combiner [7].

There is a hidden phase between Mapper and Reducer,
which contains Shuffle and Sort functions. It represents syn-
chronization barrier, because it groups all data generated from
Map function by its key values, sorts them by certain criteria,
and passes them to appropriate Reducer in the form of (key,
list of values) pairs (Fig. 2) [7].

The Reduce task, or the Reducer, uses (key, list of values)
pairs as input arguments. Before Reduce function is started,
its input files are spilled all over the cluster. As soon as all
Map functions generate their outputs, they merge into one file
per Reducer by Shuffle and Sort functions. All the data with
the same key values are processed with Reduce functions in
the same manner, and a single output per Reducer is formed
from all its (key, value) pairs. At the end, (key, value) pairs
that represent output data of MapReduce process are formed
- one pair per Reduce function (Fig. 2) [7].

III. MATRIX MULTIPLICATION ON HADOOP CLUSTER

In order to develop an efficient algorithm for matrix mul-
tiplication on Hadoop cluster, we will briefly introduce and
analyze the latest research in this area. In this section two ex-
isting algorithms for matrix multiplication on Hadoop cluster
are presented.

Authors in [5], performed an extensive analysis using
private cloud infrastructure in order to understand the per-
formance implications of virtualized resources on distributed
applications. For this analysis, several applications with dif-
ferent communication/computation characteristics were used,
namely Matrix Multiplication, Kmeans Clustering, and Con-
current Wave Equation Solver. Instead of measuring individual
characteristics such as bandwidth and latency using micro
benchmarks, real applications are used to clarify the effect
of virtualized resources.

The row/column decomposition used for matrix multiplica-
tion on Hadoop cluster that authors in [5] proposed is shown
in Fig. 3. If result matrix C is obtained by multiplying matrices
A and B, matrix B is split into a set of column blocks
and matrix A is split to a set of row blocks (Fig. 3). The
number of MapReduce iterations of proposed algorithm is

equal to the number of rows in matrix A. The number of
Map functions per iteration is equal to the number of columns
of matrix B (Fig. 3). The number of Reducers per iteration
is one. In each iteration, each Map function consumes two
inputs: one column of matrix B, and one row of matrix A. If
decomposition of matrices is considered for one iteration, then
all Mappers perform computation with the same row of matrix
A and with different column of matrix B. Considering different
iterations through time, each Mapper performs a computation
with different row of matrix A, and the same column of matrix
B (Fig. 3) [5].
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Fig. 3. Row/Column decomposition

It can be concluded that algorithm for matrix multiplication
proposed in [5] can be improved and optimized, using the
fact that the Map and Reduce functions are called many times
during the computation, which can increase network load.

In [6], three different approaches in mapping matrix el-
ements to Hadoop processes are considered. Only one of
them shows an improvement compared to algorithm for matrix
multiplication proposed in [5]. In that approach, complete
process of matrix multiplication is done in one MapReduce
iteration. Each Map function performs computation with dif-
ferent columns of matrix A, i.e. in general, with different
vertical blocks of matrix A, and with different horizontal
blocks of matrix B. However, reading of vertical matrix blocks
is not efficient, due to the fact that reading of one vertical
block requires to read many lines from the input file [6]. The
matrix decomposition into blocks can be further discussed in
order to reduce cache misses, and additionally improve the
performances [8].

In this paper we propose acceleration of Map function by
prearrangement of the input data which enables a sequential
fetch of matrix elements without a need for reading all lines
from the input file that consist a required block.

IV. DESIGN OF MAPREDUCE ALGORITHM FOR MATRIX
MULTIPLICATION WITH DATA PREARRANGEMENT

As shown in the previous section, performances of matrix
multiplication using MapReduce can be improved by execut-



ing the complete MapReduce job during one iteration, while
the elements of the matrices are fetched sequentially.

In order to enable a MapReduce matrix multiplication job
to be performed in one iteration, all result elements should be
generated during the first Reducer call. Therefore, every Map
function needs to generate one part of result matrix, which
can be either one row or one column. In both cases, every
Map function should receive one row or column from the first
matrix, and the whole second matrix. It would be a big load
for the network and it would cause a big data redundancy. The
lowest redundancy is for the case where every node receives
different data, but in such manner that each element exists
only on one node, not taking into the account an automatic
replication performed by Hadoop. This could be done using
the feature of matrix multiplication as shown in Fig. 4: only
the elements from the first matrix with the column index
associated to the row index of the elements from the second
matrix will be multiplied. According to this, all elements of
the first column from the first matrix will only multiply the
elements of the first row from the second matrix, and vice
versa.
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Fig. 4. Matrix multiplication feature

As shown in the Fig. 4, element a0,0, is needed for multi-
plication of elements only from the first row of matrix B. The
same case is for the elements a1,0 and a2,0. The multiplication
of the element ai,0 and b0,j will produce an intermediate
result c0i,j (Fig. 4), which is the first intermediate result of
the resulting element ci,j (ci,j = c0i,j + c1i,j + c2i,j). Elements
a0,1, a1,1, and a2,1 multiply elements only from the second
row of matrix B, and so on.

MapReduce reads one column from the first, and one row
from the second matrix, and sends them consecutively to the
nodes. In particular, those are elements from the first column of
matrix A denoted as (ai,0), i = 0, 1, 2 in Fig. 4, and from the
first row of matrix B denoted as (b0,i), i = 0, 1, 2. However,
because of the MapReduce feature to read lines of the input
file sequentially, we propose transposition of the first matrix
so that appropriate columns can be sequentially fetched. After
that, in order to additionally optimize reading of the input
matrices, only one input file can be created for both matrices,

where each line consists of one column of the matrix A, i.e.
one row of transposed matrix AT , and corresponding row of
matrix B.

The further optimization can be done in the case of sparse
matrices, which by definition have no more than 5-10% of non-
zero elements. In that case the elements with zero value will
not be included in the input file, and processed by MapReduce
Fig. 5.
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Fig. 5. Input file format

The input file is created as it is shown in Fig. 5. It enables
MapReduce function to send line by line of the input file to the
cluster nodes, without redundant data. The index that stands by
the value of each element from the first matrix in the lower
part of Fig. 5 indicates row index of the intermediate data,
while the index that stands by the value of each element from
the second matrix indicates a column index of the intermediate
data.

After the preparation of the file in the format shown in Fig.
5, Mapper performs the multiplication as it is shown in the Fig.
6. Each Map function multiplies every single element from
the left half of the received line (elements of the appropriate
column from the first matrix), by every single element from
the right half of the received line (elements of the appropriate
row from the second matrix). In the example shown in Fig. 6
nine intermediate results of the resulting matrix are produced:
ch0,0, c

h
0,1, . . . , c

h
2,2, where h is the index of the function. The

index i of the row and the index j of the column of the
intermediate result chi,j together will represent the key for
the reduce function, while the value will be the intermediate
result chi,j . The Reducers will perform final summarization of
intermediate results, one Reducer per resulting element ci,j .
The pseudo-code of the Map function is given as follows:

Map (key, value)
line = value.split(; )
for ( i = 0 .. number of matrix A elements −1)

elementA = line[i].split(, )
for ( j = number of matrix A elements ..

.. line.length −1)
elementB = line[j].split(, )



i = elementA[0]
j = elementB[0]
k = i , j
v = elementA[1] * elementB[1]
emit (k, v) .
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After the Map function, as it is shown in Fig. 7, every
Reduce function needs only to summarize all intermediate
data, e.g. to summarize all intermediate values associated with
the same key. Reduce functions are denoted as R1 to R9 in Fig.
7. The pseudo-code of the Reduce function is given below:

Reduce (key, valueList)
sum = 0
for each value in valueList

sum + = value
value = sum
emit (key, value) .

V. IMPLEMENTATION RESULTS

In order to illustrate the performances of the proposed
MapReduce algorithm for matrix multiplication with data
prearrangement, the algorithm is implemented and executed
on the Hadoop cluster that consists of 21 nodes. The char-
acteristics of the nodes are the following: 3 out of 21 nodes
are ”IBM” (Intel(R) Pentium(R) 4, CPU@3.00GHz, RAM:
2.4GB), while the other 18 are ”Lenovo” (Intel(R)Core(TM)2
Duo, CPU E4600@2.40GHz, RAM: 1GB). It should be men-
tioned that one of the ”IBM” machines is the master node,
and the remaining 20 are slaves.

Measurements were performed with the following parame-
ters:(1) both matrices are sparse, with fixed density of 10%;
(2) the dimensions of the matrices vary within the range 500
to 5000, with the step of 500; (3) number of slave nodes is
20; (4) number of mappers and reducers is 20.

If the block size remains at its default value of 64MB, it is
likely, due to the small size of matrices which are tested, that
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Fig. 7. Reduce function

prepared input file will be stored in one block only. In that
case only one mapper will be utilized, leaving the remaining
19 configured mappers unused. Thus, block size is configured
in such manner that every mapper gets one block (block size
= input file size / number of mappers).

Both files that represent the first and the second matrix
are implemented as textual files, which gives the MapReduce
textual input.

The obtained results for the proposed MapReduce algorithm
for matrix multiplication are given in the Fig. I. The first
column stands for the matrix dimension, while in the second
column the computation time is given. The third column
stands for direct application of conventional 3-loop matrix
multiplication on single host.

matrix dimension Hadoop time (min) CPU time (min)
500 0,3 0,47
750 0,35 1,03

1000 0,4 2,72
1250 0,57 5,37
1500 0,77 14,85
1750 1,11 41,07
2000 1,55 -
2500 2,4 -
3000 3,82 -
3500 5,12 -
4000 8,12 -
4500 11,38 -
5000 15,18 -

TABLE I
OBTAINED RESULTS FOR MAPREDUCE ALGORITHM FOR MATRIX

MULTIPLICATION

The results from Fig. I are graphically represented in Fig.
8.
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It should be mentioned that the proposed algorithm can be
additionally accelerated by using binary files instead of textual
files as an input. It means that the Map function will avoid
the text parsing overhead by reading a binary file instead of
a textual file, mostly by eliminating time for string splitting,
which can influence the obtained results.

VI. CONCLUSION

In this paper the development of new MapReduce algo-
rithm for matrix multiplication, which is able to perform
the multiplication in one iteration, is presented. In order to
achieve the goal of multiplication in one iteration, the data
was prearranged in such manner that matrix elements could
be fetched in sequential order. The proposed algorithm was

presented in detail. The data was prearranged in such
manner which introduced acceleration of Map function by
enabling sequential fetch of matrix elements without a need
for reading all lines from the input file that consist a required
block. The implementation results were given. The results
were obtained on the cluster with 20 nodes.
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