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ABSTRACT 

H.264/AVC is a new international standard for the 
compression of natural video images, in which 
deblocking filter has been adopted to remove blocking 
artifacts. The deblocking filter is either time or area 
consuming system component. The goal of this paper is a 
design of area-time efficient H.264/AVC deblocking filter 
suitable for application in mobile devices. Area-time 
tradeoff is enabled by using configurable folded bit-plane 
filter as a core for deblocking filter implementation. 
Folded filter implementation parameters are obtained in 
the manner of achievement of minimal area consumption, 
keeping in mind throughput requirement in mobile 
devices. System’s architecture is presented in detail, as 
well as the architecture of folded deblocking filter. With 
aim to illustrate functionality and tradeoffs related to 
occupation of chip resources and achieved throughputs 
we present results of FPGA prototyping. Proposed 
deblocking filter requires extremely low gate count still 
meeting the mobile application throughput requirements.  
 

1. INTRODUCTION 

Mobile devices technology is changing rapidly. There is 
an increasing number of wireless-communications 
standards, code-division multiple access, and emerging 
third-generation technologies. However, as wireless 
technologies mature, service providers differentiate 
themselves by offering new features, such as multimedia 
capabilities [1]. Video coding applications such as 
H.264/MPEG-4 Advanced Video Coding, adopts filter 
called deblocking filter in order to eliminate blocking 
artifacts and to achieve a better coding efficiency [2],[3]. 
The deblocking filter is much more complex than 
common low-pass FIR filters, thus in mobile computing, 
having in mind computational power, deblocking on 
general purpose processor is a waste of resources. 
Deblocking filter is usually implemented as a filter bank, 
where different filter is selected in the dependence on 
blurring strength on image edge. Implementation of a 
filter bank adds cost, takes up space and increases power 
usage in mobile devices. This problem can be solved 
using configurable architecture, letting a single 
architecture to perform different computations [1],[4],[5].  

In order to attain high performance in filter design, 
parallel implementation strategies such as systolic 
methods have been applied. Thus, due to their 
geometrical regularity, they are suitable for VLSI 
implementations, either as stand-alone modules or as a 
part of complex digital data path. The choice of structure 
for the implementation of an FIR filter includes 
consideration of the factors such as hardware complexity 
and throughput. Many different structures exist, most of 
which provide some tradeoff between complexity and 
throughput [6]. For dedicated applications, the design 
choice then becomes the minimal complexity structure 
that can achieve a required throughput rate. Therefore, in 
order to establish optimal area-time tradeoff, a careful 
choice of circuit design style is necessary [7].  
The goal of this paper is a design of area-time efficient 
H.264/AVC deblocking filter suitable for application in 
mobile devices. Area-time tradeoff will be exploited by 
using a configurable folded semi-systolic bit-plane filter 
array [5] as a core for deblocking filter implementation. 
Filter implementation parameters will be obtained with 
aim to achieve minimal area consumption, keeping in 
mind throughput requirement in mobile devices. 
System’s architecture will be presented in detail, as well 
as the architecture of folded deblocking filter. With aim 
to illustrate functionality and efficiency related to 
tradeoffs on chip resources occupation and achieved 
throughputs we present results of FPGA prototyping.  
The paper is organized as follows: Section 2 gives a 
background of H.264/AVC deblocking; Section 3 is 
devoted to principles of configurable FIR filtering on 
folded bit-plane array; Section 4 is the main section and 
presents deblocking filter tradeoffs according to 
configuration abilities of the implemented filter; Section 
5 is devoted to implementation results and comparisons, 
while in Section 6 concluding remarks are given. 

2. H.264/AVC DEBLOCKING ALGORITHM 

With aim to clarify the design tradeoffs of folded 
H.264/AVC deblocking filter we give a brief review of 
deblocking algorithm. 
The functional blocks of H.264/AVC encoder and 
decoder are shown in Fig. 1 and Fig. 2, respectively. The 
transformation algorithm adopted by H.264/AVC (block 
T in Figs. 1 and 2) is 4x4 Discrete Cosine Transform 
(DCT). In the DCT-based standards annoying blocking 
artifacts arise when compression ratio is high (i.e. video 
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conferencing using cellular phones). The effect is caused 
by non-overlapping nature of the blocked-base DCT 
coding and quantization of coefficients [2]. H.264/AVC 
adopts deblocking filter into the coding loop (Fig. 1 and 
Fig. 2) to remove blocking artifacts and to achieve much 
better subjective visual effect, as well as coding 
efficiency [2],[3]. 
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Figure 1. H.264/AVC Encoder 
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Figure 2. H.264/AVC Decoder 

Deblocking filter is applied to all 4x4-block edges, 
except edges at the boundary of the picture. The filtering 
is performed on 16x16 pixels macro blocks (MB), one 
after another, with all MBs of a picture in raster scan 
order [2]. The deblocking filter is invoked for luma and 
chroma component separately. For each MB, vertical 
edges are filtered from left to right, and horizontal edges 
are filtered from top to bottom (Fig. 3a, Fig. 3b), 
[2],[3],[9]. 
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Figure 3. H.264/AVC macro block, a) Edges filter order 

in 16x16 MB; b) Pixels across boundaries 

In deblocking, the output depends on the boundary 

strength and the gradient of image samples across the 
boundary (Fig. 3b), [2],[3]. As proposed in [3], there are 
five filtering modes: mode 4, strongest filter (7 tap filter 
affecting 8 pixels); mode 3, strong filter (7 tap filter 
affecting 6 pixels); mode 1 and 2 (5 tap filter affecting 5 
pixels); mode 0 (5 tap filter affecting 4 pixels, or 3 tap 
filter affecting 2 pixels).  

3. CONFIGURABLE FIR FILTERING ON 
FOLDED BIT-PLANE ARRAY 

Output words {yi} FIR filter are computed as 
(1)  11110 +−−− +++= kikiii xcxcxcy L  (1) 

where c0,c1,…,ck-1 are coefficients while {xi} are input 
words. Computation (1) can be realized in different 
manners. When high performances are required systolic 
arrays are frequently used.  
Folding [7] or time-multiplexing is a technique for 
efficient resource sharing for area-constrained behavioral 
synthesis from a data-flow graph (DFG). The basic terms 
of folding technique are folding set, folding factor and 
folding order. Folding set (S) is defined as an ordered set 
of operations, which contains N operations, time-
multiplexed on the same functional unit (FU). The 
number of operations executed by the same FU is called 
folding factor (N). Folding order (v) of operation Hv is a 
time instance in which FU of folded system executes the 
operation [7]. 
The following notation is adopted: kC – number of taps, 
mC – coefficient length, ci

j – bit of coefficient ci (with 
weight 2j), N – folding factor, k – number of folding sets 
(FUs of folded system), n – input word length, y – output 
word length, L – total number of operations for 
computation of one output word in (1). 
The Configurable Folded bit-plane FIR Filter (C3F) is 
semi-systolic architecture shown in Fig. 4 [5],[10], 
obtained by application of folding technique to semi-
systolic bit-plane FIR filter. Applying the folding 
technique to the bit-plane FIR filter architecture the 
number of basic cells is reduced for factor N, at the cost 
of decreasing the throughput for the same factor. Thus, 
finding suitable area-time tradeoff factor lies in finding 
suitable folding factor N. 
The data flow of the C3F for the case k=3, N=4, kC=2 and 
mC=6 is given in Fig. 5. Each row of basic cells in Fig. 4 
stands for one FU (i.e. folding set) that performs 

 
Figure 4. Functional block diagram of C3F with configurable number of coefficients and  

coefficient length for k=3 and N=4 



multiplication of input word with coefficient bit ci
j, and 

addition of formed partial product to previously 
computed sum of partial products. Partial product, 
computed in the FU Si (i=0,1,…,k-2), enters the FU Si+1 
with delay of one clock cycle (Fig. 5), together with the 
input word shifted for one position to the left 
(multiplication by 21), Fig. 4 and Fig. 5. The computation 
of new output word starts in each N-th time instance in 
FU S0 (Fig. 5). Coefficient Bit Supply Module (CBSM), 
Fig. 4, implements coefficient reordering algorithm [10] 
in order to enter coefficient bits in proper order (Fig. 5).  

4. CONFIGURABILITY AND DEBLOCKING 
FILTER PARAMETERS 

Each output word (1) is available at the FU Sk-1 after 
(2)  L=kC·mC=k·N (2) 

time instances (Fig. 5). The application of folding 
technique, described in [10], brings the constraint that the 
number of taps can not be equal to the number of FUs, 
i.e.  

(3)  kC≠k.  (3) 
The architecture from Fig. 4 is designed to let the number 
of coefficients (taps), kC, to vary at the cost of coefficient 
length (mC), keeping the overall number of computations 
(L) constant, and equal to the product of array 
dimensions k·N, as it is given in eq. (2). The idea on 
configuration of number of taps lies in using folding 
technique to fold array and obtain operation ordering 
rules in data path from Fig. 5 [10]. Thus, configuration 
can be performed by proper entering of input words and 
coefficient bits. In array from Fig. 4 the number of taps 
(kC) and coefficient length (mC) are controlled by signals 
ck0 and ck1.  
Further more, as it is described in [10], folding factor N 
effects only CBSM reordering algorithm, while doesn’t 
array size, and therefore it can easily be reduced. In that 
manner same array performs computations faster, 
according to (2), at the cost of either number of taps or 
coefficient length. Modified CBSM is called CBSM+. 
As proposed in [3], depending on boundary strength, five 
filtering modes with following coefficients can be used in 
deblocking: {1,1,1,2,1,1,1}/8 for mode 4 and 3,  
{1,1,4,1,1}/8 for modes 2 and 1, either {1,1,4,1,1}/8 or 
{1,2,1}/4 for mode 0. Total number of required 
operations, L, in respect to (2) for modes 4 and 3 can be 
obtained by multiplying mC, max(ci)≤2mC ⇒ mC=2, and 
the number of taps kC=7, resulting in L=14. In the same 
manner it can be shown that modes 2 and 1 requires 
L=15, while mode 0 requires L=15 or L=6 operations. In 
respect to (2), even with ability of changing folding 

factor N, it is not possible to find k and N pair that can 
implement 7-tap filter with mC=2, and 5-tap with mC=3 
filters on the same array. Thus, for mod 4 and 3 filters 
coefficient length is extended to mC=3, where L=21. 
Hence the minimal suitable array size to cover all 
previously mentioned filtering modes is k=3, while 
maximal folding factor is NMAX=7. However, due to (3), 
3 tap mode 0 filter must be realized as 4 tap filter with 
c3=0. Mode 0 filter has extended coefficient length from 
mC=2 to mC=3, in order to fit computation in k=3, and 
N=4. Configuration abilities for the chosen folded array, 
along with initial latency and clock cycles needed for 
reconfiguration are given in Table 1.  

5. DEBLOCKING FILTER IMPLEMENTATION 
AND COMAPRISONS 

Deblocking filter architecture is shown in Fig. 6. Filter 
consists of C3F as a core, which is surrounded with two 
on-chip RAM modules for pixel blocks P and Q, and 
control unit. On-chip RAM is temporary storage for 
image MBs, while control unit provides proper ordering 
of p and q pixel stream to C3F.  
 

 
Figure 6. Deblocking filter architecture 

To evaluate the accuracy and efficiency of the proposed 
architecture we described the proposed design in VHDL, 
at RTL level, which is synthesizable. We have evaluated 
mentioned folded array for two cases. The first is with 
CBSM, while the other is with CBSM+.  It should be 
noted that the reducible folding factor is employed in the 
second case. Implementation results of proposed array 
together with CBSM+, that relates to chip resources 
occupation and achieved throughput rates, are given in 
Table 1. On-chip RAMs are not taken into consideration. 
According to the JVT verification model [11], a C-
program model of deblocking filter was also developed to 
generate input simulation vectors. For the sake of 
comparison, we give Table 2 that contains 
implementation results from [8] and [9], as well as results 
for proposed architecture equipped with CBSM, or 
CBSM+.  

 
Figure 5. Data flow of C3F (k=3, N=4, kC BBB =2 and mC=6) 



Table 1 Implementation results and configuration abilities of 
configurable folded FIR filter with k=3 and NMAX=7 

k NMAX Clock 
[ns] 

Gate 
count 
[KG] 

N kC mC 
Reconf 

[clk] 
In.Lat 
[clk] 

Throughput
1/(N⋅Clock) 

[MHz] 
3 7 7.02 1.78 7 7 3 21 3 20.41 
    5 5 3 21 3 28.57 
    4 4 3 21 3 35.61 

 

Folded architecture with CBSM, does not provide folding 
factor reduction, and filters all edges using NMAX=7 filter 
regardless to the filtering mode. The number of cycles 
per macro block (MB) required for this architecture is 
constant (Table 2). The architecture with CBSM+ 
provides the folding factor reduction, thus the number of 
filtering cycles depends on video content. Table 2 gives 
the best, the worst and the number of cycles per MB 
obtained for well known Foreman video sequence. The 
best and the worst cycles per MB values are obtained for 
hypothetical video sequences where all edges are filtered 
using 4-tap and 7-tap filters, respectively.  
 

Table 2 Comparison of H.264/AVC deblocking filters 

  

Yuwen 
Huang’s 

Arch. 
[8] 

Bin 
Sheng’s 
Arch. 

[9] 

Our  
arch. 
with 

CBSM 

Our  
arch. with 
CBSM+ 

Tech. 0.25 0.25 FPGA 
VirtexE 

FPGA  
VirtexE 

Freq. 
[MHz] 100 100 100 100 

Gate 
count 20.66 K 24.00 K 1.61K ** 1.78 K ** 

Cycles/
MB 614 446 7552 

Best - 4480 
Worst - 7552  

Foreman - 
5572 

AT* 12685 10704 12158 9918 

QCIF / / 161.8 181.3 

CIF / / 40.9 44.8 

4CIF / / 9.7 11.4 

HDTV 45.2 62.3 4.3 5.1 

* For Area–Time (AT) measure we take [Gate count]x[Cycl./MB] 
** The gate count is obtained as “equivalent gate count” from Xilinx 
WebPack impl. report. Impl. is performed using VirtexE FPGA 
*** For QCIF (176x144), CIF (352x288), 4CIF (704x576), HDTV 
(1280x720) given values are in [fps]. 
 

Table 2 shows that proposed architectures have more 
than 10 times smaller gate count than architectures 
proposed in [8] and [9]. Gate count reduction is 
achieved at cost of time. Our architectures have 
approximately 10 times greater number of cycles per 
MB. Proposed architecture with CBSM has nearly the 
same AT value as the architecture proposed in [8], but 
12% worse AT value than [9]. Folded array that 
exploits reducible folding factor (with CBSM+) has 
21% better AT value than [8], and 7.3% better than 
[9]. It should be noted that configurable folded array 
with k=3, y=13, NMAX=7 and CBSM can meet the 
requirement for real-time deblocking of video sequences 
in format commonly used in mobile devices - CIF 
(352x288, 30fps) at 74 MHz, while the requirement can 

be met at 67 MHz with reducible folding factor 
employment (CBSM+).  

6. CONCLUDING REMARKS 

In this paper we presented a study of folding technique 
effectiveness in area-time tradeoff for H.264/AVC 
deblocking filter implementation. The area-time tradeoffs 
for configurable folded array were exploited in design of 
H.264/AVC deblocking filter for embedded mobile 
computing devices. It resulted in deblocking filter design 
with extremely low gate count which meets the 
requirement of real-time deblocking in target 
applications. The array is restricted for the folded factor 
at cost of time. In deblocking application, more than 
10 times smaller gate count, in respect to designs in [8] 
and [9], is achieved by nearly 10 time increased 
number of cycles per MB. The overall product of gate 
count and number of cycles per MB for the proposed 
architecture with reducible folding factor is slightly 
better than [8] and [9]. It makes our platform more 
efficient for embedded mobile computing applications 
where computational time, based on image format, is 
not of primary importance. 
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