
AREA-TIME TRADEOFFS IN H.264/AVC DEBLOCKING FILTER DESIGN
FOR MOBILE DEVICES

Vladimir Ciric, Ivan Milentijevic

Faculty of Electronic Engineering, University of Nis, Serbia
{vciric, milentijevic}@elfak.ni.ac.yu

ABSTRACT

H.264/AVC is a new international standard for the
compression of natural video images, in which
deblocking filter has been adopted to remove blocking
artifacts. The deblocking filter is either time or area
consuming system component. The goal of this paper is a
design of area-time efficient H.264/AVC deblocking filter
suitable for application in mobile devices. Area-time
tradeoff is enabled by using configurable folded bit-plane
filter as a core for deblocking filter implementation.
Folded filter implementation parameters are obtained in
the manner of achievement of minimal area consumption,
keeping in mind throughput requirement in mobile
devices. System’s architecture is presented in detail, as
well as the architecture of folded deblocking filter. With
aim to illustrate functionality and tradeoffs related to
occupation of chip resources and achieved throughputs
we present results of FPGA prototyping. Proposed
deblocking filter requires extremely low gate count still
meeting the mobile application throughput requirements.

1. INTRODUCTION

Mobile devices technology is changing rapidly. There is
an increasing number of wireless-communications
standards, code-division multiple access, and emerging
third-generation technologies. However, as wireless
technologies mature, service providers differentiate
themselves by offering new features, such as multimedia
capabilities [1]. Video coding applications such as
H.264/MPEG-4 Advanced Video Coding, adopts filter
called deblocking filter in order to eliminate blocking
artifacts and to achieve a better coding efficiency [2],[3].
The deblocking filter is much more complex than
common low-pass FIR filters, thus in mobile computing,
having in mind computational power, deblocking on
general purpose processor is a waste of resources.
Deblocking filter is usually implemented as a filter bank,
where different filter is selected in the dependence on
blurring strength on image edge. Implementation of a
filter bank adds cost, takes up space and increases power
usage in mobile devices. This problem can be solved
using configurable architecture, letting a single
architecture to perform different computations [1],[4],[5].

In order to attain high performance in filter design,
parallel implementation strategies such as systolic
methods have been applied. Thus, due to their
geometrical regularity, they are suitable for VLSI
implementations, either as stand-alone modules or as a
part of complex digital data path. The choice of structure
for the implementation of an FIR filter includes
consideration of the factors such as hardware complexity
and throughput. Many different structures exist, most of
which provide some tradeoff between complexity and
throughput [6]. For dedicated applications, the design
choice then becomes the minimal complexity structure
that can achieve a required throughput rate. Therefore, in
order to establish optimal area-time tradeoff, a careful
choice of circuit design style is necessary [7].
The goal of this paper is a design of area-time efficient
H.264/AVC deblocking filter suitable for application in
mobile devices. Area-time tradeoff will be exploited by
using a configurable folded semi-systolic bit-plane filter
array [5] as a core for deblocking filter implementation.
Filter implementation parameters will be obtained with
aim to achieve minimal area consumption, keeping in
mind throughput requirement in mobile devices.
System’s architecture will be presented in detail, as well
as the architecture of folded deblocking filter. With aim
to illustrate functionality and efficiency related to
tradeoffs on chip resources occupation and achieved
throughputs we present results of FPGA prototyping.
The paper is organized as follows: Section 2 gives a
background of H.264/AVC deblocking; Section 3 is
devoted to principles of configurable FIR filtering on
folded bit-plane array; Section 4 is the main section and
presents deblocking filter tradeoffs according to
configuration abilities of the implemented filter; Section
5 is devoted to implementation results and comparisons,
while in Section 6 concluding remarks are given.

2. H.264/AVC DEBLOCKING ALGORITHM

With aim to clarify the design tradeoffs of folded
H.264/AVC deblocking filter we give a brief review of
deblocking algorithm.
The functional blocks of H.264/AVC encoder and
decoder are shown in Fig. 1 and Fig. 2, respectively. The
transformation algorithm adopted by H.264/AVC (block
T in Figs. 1 and 2) is 4x4 Discrete Cosine Transform
(DCT). In the DCT-based standards annoying blocking
artifacts arise when compression ratio is high (i.e. video

1-4244-0779-6/07/$20.00 ©2007 IEEE

conferencing using cellular phones). The effect is caused
by non-overlapping nature of the blocked-base DCT
coding and quantization of coefficients [2]. H.264/AVC
adopts deblocking filter into the coding loop (Fig. 1 and
Fig. 2) to remove blocking artifacts and to achieve much
better subjective visual effect, as well as coding
efficiency [2],[3].

Fn
(current)

F’n-1
(reference)

F’n
(reconstr.)

ME

MC

Intra
Prediction

Choose
Intra

Prediction

Filter T-1

T Q
Dn

-

+

Q-1
+

+

D’n

Inter

Intra

P(1 or 2 prev
encoded frames)

uF’n

X NAL
Reorder

Entropy
Encode

Figure 1. H.264/AVC Encoder
F’n-1

(reference) MC

Intra
Prediction

Inter

Intra

P(1 or 2 prev
encoded frames)

T-1 Q-1
+

+

D’nF’n
(reconstr.) Filter

uF’n X NAL
Reorder

Entropy
Encode

Figure 2. H.264/AVC Decoder

Deblocking filter is applied to all 4x4-block edges,
except edges at the boundary of the picture. The filtering
is performed on 16x16 pixels macro blocks (MB), one
after another, with all MBs of a picture in raster scan
order [2]. The deblocking filter is invoked for luma and
chroma component separately. For each MB, vertical
edges are filtered from left to right, and horizontal edges
are filtered from top to bottom (Fig. 3a, Fig. 3b),
[2],[3],[9].

Luma

Cb

Cr
Vertical

boundary

Horizontal
boundary

p3
p2
p1
p0
q0
q1
q2
q3

p3p2p1p0q0q1q2q3

a) b)
Figure 3. H.264/AVC macro block, a) Edges filter order

in 16x16 MB; b) Pixels across boundaries

In deblocking, the output depends on the boundary

strength and the gradient of image samples across the
boundary (Fig. 3b), [2],[3]. As proposed in [3], there are
five filtering modes: mode 4, strongest filter (7 tap filter
affecting 8 pixels); mode 3, strong filter (7 tap filter
affecting 6 pixels); mode 1 and 2 (5 tap filter affecting 5
pixels); mode 0 (5 tap filter affecting 4 pixels, or 3 tap
filter affecting 2 pixels).

3. CONFIGURABLE FIR FILTERING ON
FOLDED BIT-PLANE ARRAY

Output words {yi} FIR filter are computed as
(1) 11110 +−−− +++= kikiii xcxcxcy L (1)

where c0,c1,…,ck-1 are coefficients while {xi} are input
words. Computation (1) can be realized in different
manners. When high performances are required systolic
arrays are frequently used.
Folding [7] or time-multiplexing is a technique for
efficient resource sharing for area-constrained behavioral
synthesis from a data-flow graph (DFG). The basic terms
of folding technique are folding set, folding factor and
folding order. Folding set (S) is defined as an ordered set
of operations, which contains N operations, time-
multiplexed on the same functional unit (FU). The
number of operations executed by the same FU is called
folding factor (N). Folding order (v) of operation Hv is a
time instance in which FU of folded system executes the
operation [7].
The following notation is adopted: kC – number of taps,
mC – coefficient length, ci

j – bit of coefficient ci (with
weight 2j), N – folding factor, k – number of folding sets
(FUs of folded system), n – input word length, y – output
word length, L – total number of operations for
computation of one output word in (1).
The Configurable Folded bit-plane FIR Filter (C3F) is
semi-systolic architecture shown in Fig. 4 [5],[10],
obtained by application of folding technique to semi-
systolic bit-plane FIR filter. Applying the folding
technique to the bit-plane FIR filter architecture the
number of basic cells is reduced for factor N, at the cost
of decreasing the throughput for the same factor. Thus,
finding suitable area-time tradeoff factor lies in finding
suitable folding factor N.
The data flow of the C3F for the case k=3, N=4, kC=2 and
mC=6 is given in Fig. 5. Each row of basic cells in Fig. 4
stands for one FU (i.e. folding set) that performs

Figure 4. Functional block diagram of C3F with configurable number of coefficients and

coefficient length for k=3 and N=4

multiplication of input word with coefficient bit ci
j, and

addition of formed partial product to previously
computed sum of partial products. Partial product,
computed in the FU Si (i=0,1,…,k-2), enters the FU Si+1
with delay of one clock cycle (Fig. 5), together with the
input word shifted for one position to the left
(multiplication by 21), Fig. 4 and Fig. 5. The computation
of new output word starts in each N-th time instance in
FU S0 (Fig. 5). Coefficient Bit Supply Module (CBSM),
Fig. 4, implements coefficient reordering algorithm [10]
in order to enter coefficient bits in proper order (Fig. 5).

4. CONFIGURABILITY AND DEBLOCKING
FILTER PARAMETERS

Each output word (1) is available at the FU Sk-1 after
(2) L=kC·mC=k·N (2)

time instances (Fig. 5). The application of folding
technique, described in [10], brings the constraint that the
number of taps can not be equal to the number of FUs,
i.e.

(3) kC≠k. (3)
The architecture from Fig. 4 is designed to let the number
of coefficients (taps), kC, to vary at the cost of coefficient
length (mC), keeping the overall number of computations
(L) constant, and equal to the product of array
dimensions k·N, as it is given in eq. (2). The idea on
configuration of number of taps lies in using folding
technique to fold array and obtain operation ordering
rules in data path from Fig. 5 [10]. Thus, configuration
can be performed by proper entering of input words and
coefficient bits. In array from Fig. 4 the number of taps
(kC) and coefficient length (mC) are controlled by signals
ck0 and ck1.
Further more, as it is described in [10], folding factor N
effects only CBSM reordering algorithm, while doesn’t
array size, and therefore it can easily be reduced. In that
manner same array performs computations faster,
according to (2), at the cost of either number of taps or
coefficient length. Modified CBSM is called CBSM+.
As proposed in [3], depending on boundary strength, five
filtering modes with following coefficients can be used in
deblocking: {1,1,1,2,1,1,1}/8 for mode 4 and 3,
{1,1,4,1,1}/8 for modes 2 and 1, either {1,1,4,1,1}/8 or
{1,2,1}/4 for mode 0. Total number of required
operations, L, in respect to (2) for modes 4 and 3 can be
obtained by multiplying mC, max(ci)≤2mC ⇒ mC=2, and
the number of taps kC=7, resulting in L=14. In the same
manner it can be shown that modes 2 and 1 requires
L=15, while mode 0 requires L=15 or L=6 operations. In
respect to (2), even with ability of changing folding

factor N, it is not possible to find k and N pair that can
implement 7-tap filter with mC=2, and 5-tap with mC=3
filters on the same array. Thus, for mod 4 and 3 filters
coefficient length is extended to mC=3, where L=21.
Hence the minimal suitable array size to cover all
previously mentioned filtering modes is k=3, while
maximal folding factor is NMAX=7. However, due to (3),
3 tap mode 0 filter must be realized as 4 tap filter with
c3=0. Mode 0 filter has extended coefficient length from
mC=2 to mC=3, in order to fit computation in k=3, and
N=4. Configuration abilities for the chosen folded array,
along with initial latency and clock cycles needed for
reconfiguration are given in Table 1.

5. DEBLOCKING FILTER IMPLEMENTATION
AND COMAPRISONS

Deblocking filter architecture is shown in Fig. 6. Filter
consists of C3F as a core, which is surrounded with two
on-chip RAM modules for pixel blocks P and Q, and
control unit. On-chip RAM is temporary storage for
image MBs, while control unit provides proper ordering
of p and q pixel stream to C3F.

Figure 6. Deblocking filter architecture

To evaluate the accuracy and efficiency of the proposed
architecture we described the proposed design in VHDL,
at RTL level, which is synthesizable. We have evaluated
mentioned folded array for two cases. The first is with
CBSM, while the other is with CBSM+. It should be
noted that the reducible folding factor is employed in the
second case. Implementation results of proposed array
together with CBSM+, that relates to chip resources
occupation and achieved throughput rates, are given in
Table 1. On-chip RAMs are not taken into consideration.
According to the JVT verification model [11], a C-
program model of deblocking filter was also developed to
generate input simulation vectors. For the sake of
comparison, we give Table 2 that contains
implementation results from [8] and [9], as well as results
for proposed architecture equipped with CBSM, or
CBSM+.

Figure 5. Data flow of C3F (k=3, N=4, kC BBB =2 and mC=6)

Table 1 Implementation results and configuration abilities of
configurable folded FIR filter with k=3 and NMAX=7

k NMAX Clock
[ns]

Gate
count
[KG]

N kC mC
Reconf

[clk]
In.Lat
[clk]

Throughput
1/(N⋅Clock)

[MHz]
3 7 7.02 1.78 7 7 3 21 3 20.41
 5 5 3 21 3 28.57
 4 4 3 21 3 35.61

Folded architecture with CBSM, does not provide folding
factor reduction, and filters all edges using NMAX=7 filter
regardless to the filtering mode. The number of cycles
per macro block (MB) required for this architecture is
constant (Table 2). The architecture with CBSM+
provides the folding factor reduction, thus the number of
filtering cycles depends on video content. Table 2 gives
the best, the worst and the number of cycles per MB
obtained for well known Foreman video sequence. The
best and the worst cycles per MB values are obtained for
hypothetical video sequences where all edges are filtered
using 4-tap and 7-tap filters, respectively.

Table 2 Comparison of H.264/AVC deblocking filters

Yuwen
Huang’s

Arch.
[8]

Bin
Sheng’s
Arch.

[9]

Our
arch.
with

CBSM

Our
arch. with
CBSM+

Tech. 0.25 0.25 FPGA
VirtexE

FPGA
VirtexE

Freq.
[MHz] 100 100 100 100

Gate
count 20.66 K 24.00 K 1.61K ** 1.78 K **

Cycles/
MB 614 446 7552

Best - 4480
Worst - 7552

Foreman -
5572

AT* 12685 10704 12158 9918

QCIF / / 161.8 181.3

CIF / / 40.9 44.8

4CIF / / 9.7 11.4

HDTV 45.2 62.3 4.3 5.1

* For Area–Time (AT) measure we take [Gate count]x[Cycl./MB]
** The gate count is obtained as “equivalent gate count” from Xilinx
WebPack impl. report. Impl. is performed using VirtexE FPGA
*** For QCIF (176x144), CIF (352x288), 4CIF (704x576), HDTV
(1280x720) given values are in [fps].

Table 2 shows that proposed architectures have more
than 10 times smaller gate count than architectures
proposed in [8] and [9]. Gate count reduction is
achieved at cost of time. Our architectures have
approximately 10 times greater number of cycles per
MB. Proposed architecture with CBSM has nearly the
same AT value as the architecture proposed in [8], but
12% worse AT value than [9]. Folded array that
exploits reducible folding factor (with CBSM+) has
21% better AT value than [8], and 7.3% better than
[9]. It should be noted that configurable folded array
with k=3, y=13, NMAX=7 and CBSM can meet the
requirement for real-time deblocking of video sequences
in format commonly used in mobile devices - CIF
(352x288, 30fps) at 74 MHz, while the requirement can

be met at 67 MHz with reducible folding factor
employment (CBSM+).

6. CONCLUDING REMARKS

In this paper we presented a study of folding technique
effectiveness in area-time tradeoff for H.264/AVC
deblocking filter implementation. The area-time tradeoffs
for configurable folded array were exploited in design of
H.264/AVC deblocking filter for embedded mobile
computing devices. It resulted in deblocking filter design
with extremely low gate count which meets the
requirement of real-time deblocking in target
applications. The array is restricted for the folded factor
at cost of time. In deblocking application, more than
10 times smaller gate count, in respect to designs in [8]
and [9], is achieved by nearly 10 time increased
number of cycles per MB. The overall product of gate
count and number of cycles per MB for the proposed
architecture with reducible folding factor is slightly
better than [8] and [9]. It makes our platform more
efficient for embedded mobile computing applications
where computational time, based on image format, is
not of primary importance.

REFERENCES

[1] L. Paulson, L. Garber, “Reconfiguring Wireless Phones
with Adaptive Chips”, IEEE Computer, Vol. 36, Number 9,
September 2003, pp. 9-11.
[2] I. Richardson, “H.264 and MPEG-4 Video Compression –
Video Coding for Next Generation Multimedia”, John Wiley &
Sons, In., New York, 2003.
[3] Z. Yu, J. Zhang, „Video Deblocking with Fine-grained
Scalable Complexity for Embedded Mobile Computing“,
International Conference on Signal Processing, Vol. 2,
September 2004, pp. 1173 – 1178.
[4] I. Milentijevic, M. Stojcev, D. Maksimovic, "Configurable
Digit - Serial Convolver of Type F", Microelectronics Journal,
Vol. 27. No. 6, Sep. 1996, pp. 559-566.
[5] I. Milentijevic, V. Ciric, “Assignments of Folding Sets for
Adaptive FIR Filtering on Folded Array”, Proceedings of the
WPS-DSD 2003, 29th Euromicro Conference, Belek, Turkey,
September 2003, pp. 21-22.
[6] Y-C. Lin, F-C. Lin, "Classes of Systolic Arrays for Digital
Filtering", Int. J. Electronics, Vol. 70, No. 4, 1991, pp. 729-
737.
[7] K. K. Parhi, “VLSI Digital Signal Processing Systems
(Design and Implementation)”, John Wiley & Sons, In., New
York, 2000.
[8] Y. Huang, T. Chen, “Architecture Design for Deblocking
Filter in H.264/AVC”, Proceedings of ICME, Baltimore,
Maryland, USA, July 2003, pp. 692-696.
[9] B. Sheng, W. Gao, D. Wu, ”An Implemented Architecture
of Deblocking Filter for H.Z64/AVC”, International
Conference on Image Processing (ICIP), 2004, pp. 665-668.
[10] V. Ćiric, I. Milentijevic, "Coefficient Bit Reordering
Method for Configurable FIR Filtering on Folded Bit-Plane
Array", 8th EUROMICRO Conference on Digital System
Design, Porto, Portugal, September 2005, pp. 135-138.
[11] JVT software JM10.2, January 2006.

