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Abstract - Configurable folded bit-plane architecture for FIR 
filtering that allows programming of both number of taps and 
coefficient length is proposed in this paper. Proposed architecture 
allows designing of flexible folded FIR filter array with fixed size 
that enables efficient implementation of different wireless 
standards on single filter. This paper deals with the mapping of 
unfolded data flow graph onto the configurable folded system 
using a new folding set assignment. The obtained architecture as a 
folded system is described by data flow graph, functional block 
diagram and data flow diagram.  

I. INTRODUCTION 

Cellular-phone technology is changing rapidly. There is 
an increasing number of wireless-communications 
standards, including variants of the IEEE 802.11 wireless 
LAN specification, code-division multiple access, the 
global system for mobile communications, and emerging 
third-generation technologies. Traditionally, devices need a 
separate chip to work with each standard. However, as 
wireless technologies mature, service providers 
differentiate themselves by offering new features, such as 
multimedia capabilities. Providing each feature typically 
requires a separate chip, or essence, multiple circuitry 
systems physically joined on a peace of silicon [1]. The 
additional circuitry adds cost, takes up space, increases 
power usage in mobile devices, and increase product-
design time. This problem can be solved using adaptive 
approach. With this approach, software can redraw a chip’s 
physical circuitry on the fly, letting a single processor to 
perform multiple functions [1].  

Factors such as regularity, scalability ande ability to trade 
hardware for speed within the context of an architecture 
become more important [2]-[4]. The application of folding 
technique onto array type architectures for FIR filtering 
gives designers greater flexibility in finding the best trade-
off between hardware size and throughput rate [5]. The 
folding transformation is used to systematically determine 
the control circuits in DSP architectures where multiple 
algorithm operations are time multiplexed to a single 
functional unit [6]. By executing multiple algorithm 
operations on a single functional unit, the number of 
functional units in the implementation is reduced, resulting 
in integrated circuit with low silicon area [7]. 

As a starting architecture for the synthesis of the folded 
bit-plane FIR filter architecture with changeable folding sets, 
well-known bit-plane architecture (BPA) [8] was used in 
[9]-[10]. The BPA is highly regular architecture, which 

allows extensive pipelining, regular layout, high 
computational throughput, truncation of Least Significant 
Bits (LSBs) of intermediate results without any loss of 
accuracy, and programmability of coefficients.  

In this paper we propose flexible folded bit-plane 
architecture for FIR filtering that allows programming of 
both number of taps and coefficient length. As a starting 
point we use the transformed Data Flow Graph (DFG) for 
the BPA proposed in [9] and involve new assignment of 
folding sets [10]. This paper deals with the mapping of the 
transformed DFG for the BPA onto the configurable folded 
system where new assignment of folding sets is 
implemented. 

The obtained architecture as a flexible folded system, will 
be described by DFG, functional block diagram and the data 
flow diagram. The method of operation and operations 
mapping onto the processing units will be described in 
detail. The folded processor array is fed with data by 
hardware module for input data entering and coefficient 
supply module. The algorithms for data reordering in both 
modules will be presented, too. The folded FIR filter 
architecture is described in VHDL as a parameterized FIR 
filter core. For the sake of the illustration of the architecture 
functionality and programming capabilities, few examples 
are implemented in FPGA technology. The results of 
implementation, concerning throughput and chip occupation, 
will be presented. 

II. OPERATIONS MAPPING 
The following notation provides the basis for further 

explanation of mapping of DFG for BPA onto the 
configurable system: mc – coefficient length, kc –number of 
coefficients, ci

j – bit of coefficient ci (with weight 2j),  
N – folding factor, k – number of folding sets, n – length of 
input words xi, L – total number of “operations” in the 
DFG, where one operation assumes forming of partial 
product and the addition performed on one “row” of basic 
cells (basic cell contains AND gate and full adder),  
p-position of operation within the DFG (0≤p≤L-1), Ss–s-th 
folding set (0≤s≤k-1). 

Starting DFG, which is well prepared for application of 
folding technique is shown in Fig. 1. The mathematical 
description of folding sets assignment (Ss|r) is done 
according to the following equations 
  s= p mod k  
  r= p mod N. (1) 

The idea of mapping different operations onto the 
different hardware units according to the chosen number of 
coefficients and coefficient length in fixed array structure is 
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introduced with (1). The proposed mapping of operations 
enables both changing the number of coefficients and 
coefficient length including constraint L= kcmc= kN. 

The hardware size reducing for factor N is provided in a 
respect to the architecture from Fig. 1. 

Let us note that, the number of folding sets is not 
obligatory equal to the number of coefficients. 

In order to obtain mapping dependencies between 
operations and DFG nodes, transformed DFG from Fig. 1 
should be used. Each operation from DFG (Fig. 1) stands 
for multiplication of input data words by one coefficient 
bit. Assignment of position numbers to operations in DFG 
(p) is done as follows: the leftmost operation is denoted 
with 0, while the rightmost operation is denoted with L-1 
(Fig. 1). 

Operation p (0≤p≤L-1) from Fig. 1 performs 
multiplication of input data word by coefficient bit ci

j. 
According to (1), folded architecture multiplies input data 
word (Fig. 1) by coefficient ci

j on folding set s (0≤s≤k-1) in 
time instance δ⋅N+r (0≤r≤N-1; δ=0,1,2,…). The operation 
that has position in DFG equal to p (Fig. 1), according to 
folding set assignment (1), can be described as 

  ( )( i1j-p cc ++= km )

)

. (2) 

The dependency between folding set s and folding order 
r of coefficient bit ci with weight 2j, using (1) and (2), is 
obtained as: 

   (3) 
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Expression (3) describes the folding set s that performs 
multiplication by coefficient ci

j in time instances δ⋅N+r 
(0≤r≤N-1; δ=0,1,2,…). 

III. FOLDED BIT-PLANE ARCHITECTURE 

Using a new assignment of folding sets that is applied 
on the transformed DFG from Fig. 1, we obtain folded Bit-
Plane architecture in general form (Fig. 2). Input Data 
Entering Module (IDEM), denoted with dashed lines in 
Fig. 2, provides input data for the folded architecture in 
accordance with folding set assignment (1). 

Sections S0,S1,…,Sk-1 in Fig. 2 are Processing Elements 
(PE) of the folded architecture. Each section is devoted to 
computations from the corresponding folding set. Sections 
are implemented as rows of basic cells in functional block 
diagram, where the basic cell is comprised of AND gate 
and full adder. Functional block diagram for obtained 

folded FIR filter architecture with changeable number of 
coefficients and coefficient length is shown in Fig. 3 for 
case k=3, N=4, kc=2 and mc=6.  

Let us note that the ordering of coefficient depends on 
number of coefficients, kc, and coefficient length mc. The 
Coefficient Bit Supply Module (CBSM) from Fig. 3 
provides the proper ordering of coefficient bits regardless 
to coefficient number and length. The internal structure of 
CBSM from Fig. 3 is given in Fig. 4.  

In the respect to operations mapping (Eq. 3), CBRM has 
two operational modes. First, initialization mode, when 
coefficient bits are entered into the CBRM, and the second, 
run mode, when CBRM is feeding array with coefficient 
bits. 

The CBSM is implemented as two-dimensional array of 
latches where each latch stores one bit of the coefficient 
(Fig. 4). The number of rows is equal to the number of 
folding sets in FBSM (k) while the number of columns is 
equal to the FBSM’s folding factor (N). Output from each 
row is feeding one folding set of the folded array with 
coefficient bits. Rows are implemented as shift registers, so 
during the run mode coefficients rotate through the rows 
from right to left, feeding each folding set of folded array 
with coefficient bits in correct order (solid arrows in Fig. 4).  

Problem of providing the correct bit order, during 
initialization mode, can be solved using the property of 
modulo dependence in (3). Due, the trace of the first 
coefficient bit  can be described with mapping of time 

instances t∈{1,2,…,k⋅N} onto the array position [α,β]:  

0
1−ckc

α=((t-1) mod k)+1 

β=(( t-1) mod N)+1. 

The number of clock cycles, required for initializing the 
structure, is k⋅N. 

IV. FUNCTIONAL DESCRIPTION 

Folding sets S0,S1,…,Sk-1 are shown in dashed boxes 
(Fig. 2). Each folding set contains N operations. In order to 
clarify the folded FIR filter method of operation, the 
hardware section that performs the operation from set SS 
(s=0,1,…,k-1) is also denoted with SS. Initially, the 
computation starts in folding set S0 where the product 
20⋅ckc-1

0⋅x0 is obtained in the first clock cycle. In the next 
clock cycle folding set S1 generates the partial product 
21⋅ckc-1

1⋅x0 adding previously computed partial product 
from S0. Thus, the value (20⋅ckc-1

0⋅x0)+(21⋅ckc-1
1⋅x0) is 

1 2 m m+1 m+2 2m (k-1)m+1 (k-1)m+2 k m

 
Fig. 1. Transformed DFG 



entered into the next section, which performs the 
operations from S2, in the third clock cycle. The next 
important time instance is (k+1)st clock cycle. In that clock 
cycle both input data path and summation path are folded 
from section Sk-1 to S0. In input data path 2k⋅x0 is present at 
input of the section S0, while in the summation path  
(20⋅ckc-1

0⋅x0)+(21⋅ckc-1
1⋅x0)+...+(2k-1⋅ckc-1

k-1⋅x0) enters the same 
section. S0 adds 2k⋅ckc-1

k⋅x0 to the entered sum. But the 
computation for the coefficient ckc-1 is not finished yet. 

The complete product ckc-1x0 is obtained in the section 
S(mc-1) mod k during clock cycle mc. The computation of  
ckc-2x1 starts in (mc+1)st clock cycle. The section Smc mod k 
computes 

{t=N +0}
{t=i*   }
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Fig. 2. Folded FIR filter architecture with changeable number of coefficients and coefficient length 

{(20⋅ckc-1
0x0)+(21⋅ckc-1

1⋅x0)+...+(2mc-1⋅ckc-1
mc-1⋅x0)}+ +20⋅ckc-2

0⋅x1= 

= (ckc-1x0)+(2mc-1⋅ckc-2
0⋅x1). 

The first completely generated result at output is y0 with 
latency 2mc-N clock cycles. New result y is generated every 
N clock cycles. The data flow example that illustrates 
described process of computation is shown in Fig. 5.  

The proposed architecture supports the operation with 
changeable number of coefficients and coefficient length.  

V. IMPLEMENTATION 

The implementation is done onto the FPGA Spartan II 
s200-5pq208 with aim to illustrate what filtering can be 
carried out onto the one folded programmable architecture. 
The Table I illustrates the abilities of one implemented 
architecture with n=8, k=8, Nmax=16 and y=27 (y stands for 
implemented length of output word).  

Table I gives the implementation results for clock 
period, throughput and initial latency for possible 
programmed values of kc and mc taking into account chosen 
folding factor N (Nmax≥N≥1). Using the data from Table I, 
the graphical representation in Fig. 6 that describes the 
throughput as a function of chosen folding factor, is 
generated. Increasing of throughput is achieved by 
decreasing of folding factor. Table I also contains values 

for initial latency as it is given by 2mc-N+AdderLatency. 
The initial latency depends also on adder’s latency. In the 

implemented example adder’s pipeline stages is equal to 
adder’s length (y=27). The number of adder’s pipeline stages 
remains the same regardless to the programmed values for kc 
and mc.  

TABLE I 
POSSIBILITIES FOR CONFIGURATION OF THE ARRAY 

k N kc mc Used Clock Throughput Initial latency
    slices [MHz] [clk] [MHz] [clk] [ns] 

8 16 2 64 642 [25%] 86.69 16 12.28 139 707.51
  4 32 642[25%] 86.69 16 12.28 75 381.75

8 8 2 32 642[25%] 86.69 8 24.56 83 422.47
  4 16 642[25%] 86.69 8 24.56 51 259.59

8 4 2 16 642[25%] 86.69 4 49.12 55 279.95
  4 8 642[25%] 86.69 4 49.12 39 198.51

VI. DISCUSSION AND CONCLUSIONS 

The transformation of source DFG for the bit-plane 
architecture and proposed assignment of folding sets enable 
the synthesis of fully pipelined folded FIR filter 
architecture with changeable number of coefficients, 
changeable coefficient length, and adjustable folding 
factor. The derived architecture has kept desirable features 
of source architecture such as extensive pipelining, high 
regularity, truncation of LSBs of intermediate results 
without any loss of accuracy. FPGA implementation of 
proposed architecture proved the functionality of the 
architecture and showed liner dependency of throughput as 
a function of folding factor in fixed size arrays. tradeoffs 
between throughput and occupation of on-chip resources as 
well as to illustrate configuration capabilities of the folded 
architecture. Proposed architecture allows designing of 
flexible folded FIR filter array with fixed size that enables 
efficient implementation of different wireless standards on 
single filter. 
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Fig. 3. Functional block diagram 

 
Fig. 5. Data flow for folded architecture (k=3, N=4, kc =2 and mc=6) 

1

2

3

serial in

[1,1]

[2,1]

[3,1]

[1,2]

[2,2]

[3,2]

[1,3]

[2,3]

[3,3]

[1,4]

[2,4]

[3,4]

 
 

Fig. 4. Coefficient Bit Supply Module – CBSM
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