
Flexible Folded FIR Filter Architecture
I. Milentijevic, V. Ciric, O. Vojinovic

Abstract - Configurable folded bit-plane architecture for FIR
filtering that allows programming of both number of taps and
coefficient length is proposed in this paper. Proposed architecture
allows designing of flexible folded FIR filter array with fixed size
that enables efficient implementation of different wireless
standards on single filter. This paper deals with the mapping of
unfolded data flow graph onto the configurable folded system
using a new folding set assignment. The obtained architecture as a
folded system is described by data flow graph, functional block
diagram and data flow diagram.

I. INTRODUCTION

Cellular-phone technology is changing rapidly. There is
an increasing number of wireless-communications
standards, including variants of the IEEE 802.11 wireless
LAN specification, code-division multiple access, the
global system for mobile communications, and emerging
third-generation technologies. Traditionally, devices need a
separate chip to work with each standard. However, as
wireless technologies mature, service providers
differentiate themselves by offering new features, such as
multimedia capabilities. Providing each feature typically
requires a separate chip, or essence, multiple circuitry
systems physically joined on a peace of silicon [1]. The
additional circuitry adds cost, takes up space, increases
power usage in mobile devices, and increase product-
design time. This problem can be solved using adaptive
approach. With this approach, software can redraw a chip’s
physical circuitry on the fly, letting a single processor to
perform multiple functions [1].

Factors such as regularity, scalability ande ability to trade
hardware for speed within the context of an architecture
become more important [2]-[4]. The application of folding
technique onto array type architectures for FIR filtering
gives designers greater flexibility in finding the best trade-
off between hardware size and throughput rate [5]. The
folding transformation is used to systematically determine
the control circuits in DSP architectures where multiple
algorithm operations are time multiplexed to a single
functional unit [6]. By executing multiple algorithm
operations on a single functional unit, the number of
functional units in the implementation is reduced, resulting
in integrated circuit with low silicon area [7].

As a starting architecture for the synthesis of the folded
bit-plane FIR filter architecture with changeable folding sets,
well-known bit-plane architecture (BPA) [8] was used in
[9]-[10]. The BPA is highly regular architecture, which

allows extensive pipelining, regular layout, high
computational throughput, truncation of Least Significant
Bits (LSBs) of intermediate results without any loss of
accuracy, and programmability of coefficients.

In this paper we propose flexible folded bit-plane
architecture for FIR filtering that allows programming of
both number of taps and coefficient length. As a starting
point we use the transformed Data Flow Graph (DFG) for
the BPA proposed in [9] and involve new assignment of
folding sets [10]. This paper deals with the mapping of the
transformed DFG for the BPA onto the configurable folded
system where new assignment of folding sets is
implemented.

The obtained architecture as a flexible folded system, will
be described by DFG, functional block diagram and the data
flow diagram. The method of operation and operations
mapping onto the processing units will be described in
detail. The folded processor array is fed with data by
hardware module for input data entering and coefficient
supply module. The algorithms for data reordering in both
modules will be presented, too. The folded FIR filter
architecture is described in VHDL as a parameterized FIR
filter core. For the sake of the illustration of the architecture
functionality and programming capabilities, few examples
are implemented in FPGA technology. The results of
implementation, concerning throughput and chip occupation,
will be presented.

II. OPERATIONS MAPPING
The following notation provides the basis for further

explanation of mapping of DFG for BPA onto the
configurable system: mc – coefficient length, kc –number of
coefficients, ci

j – bit of coefficient ci (with weight 2j),
N – folding factor, k – number of folding sets, n – length of
input words xi, L – total number of “operations” in the
DFG, where one operation assumes forming of partial
product and the addition performed on one “row” of basic
cells (basic cell contains AND gate and full adder),
p-position of operation within the DFG (0≤p≤L-1), Ss–s-th
folding set (0≤s≤k-1).

Starting DFG, which is well prepared for application of
folding technique is shown in Fig. 1. The mathematical
description of folding sets assignment (Ss|r) is done
according to the following equations
 s= p mod k
 r= p mod N. (1)

The idea of mapping different operations onto the
different hardware units according to the chosen number of
coefficients and coefficient length in fixed array structure is

I. Milentijevic, V. Ciric, O. Vojinovic are with the Department
of Computer Science, Faculty of Electronic Engineering,
University of Nis, Beogradska 14, 18000 Nis, Serbia and
Montenegro, E-mail: {milentijevic,vciric,oliver}@elfak.ni.ac.yu

introduced with (1). The proposed mapping of operations
enables both changing the number of coefficients and
coefficient length including constraint L= kcmc= kN.

The hardware size reducing for factor N is provided in a
respect to the architecture from Fig. 1.

Let us note that, the number of folding sets is not
obligatory equal to the number of coefficients.

In order to obtain mapping dependencies between
operations and DFG nodes, transformed DFG from Fig. 1
should be used. Each operation from DFG (Fig. 1) stands
for multiplication of input data words by one coefficient
bit. Assignment of position numbers to operations in DFG
(p) is done as follows: the leftmost operation is denoted
with 0, while the rightmost operation is denoted with L-1
(Fig. 1).

Operation p (0≤p≤L-1) from Fig. 1 performs
multiplication of input data word by coefficient bit ci

j.
According to (1), folded architecture multiplies input data
word (Fig. 1) by coefficient ci

j on folding set s (0≤s≤k-1) in
time instance δ⋅N+r (0≤r≤N-1; δ=0,1,2,…). The operation
that has position in DFG equal to p (Fig. 1), according to
folding set assignment (1), can be described as

 ()(i1j-p cc ++= km)

)

. (2)

The dependency between folding set s and folding order
r of coefficient bit ci with weight 2j, using (1) and (2), is
obtained as:

 (3)
()()()
()()(N modi1jr

 modi1js

cc

cc
++−⋅=

++−⋅=

km
kkm

Expression (3) describes the folding set s that performs
multiplication by coefficient ci

j in time instances δ⋅N+r
(0≤r≤N-1; δ=0,1,2,…).

III. FOLDED BIT-PLANE ARCHITECTURE

Using a new assignment of folding sets that is applied
on the transformed DFG from Fig. 1, we obtain folded Bit-
Plane architecture in general form (Fig. 2). Input Data
Entering Module (IDEM), denoted with dashed lines in
Fig. 2, provides input data for the folded architecture in
accordance with folding set assignment (1).

Sections S0,S1,…,Sk-1 in Fig. 2 are Processing Elements
(PE) of the folded architecture. Each section is devoted to
computations from the corresponding folding set. Sections
are implemented as rows of basic cells in functional block
diagram, where the basic cell is comprised of AND gate
and full adder. Functional block diagram for obtained

folded FIR filter architecture with changeable number of
coefficients and coefficient length is shown in Fig. 3 for
case k=3, N=4, kc=2 and mc=6.

Let us note that the ordering of coefficient depends on
number of coefficients, kc, and coefficient length mc. The
Coefficient Bit Supply Module (CBSM) from Fig. 3
provides the proper ordering of coefficient bits regardless
to coefficient number and length. The internal structure of
CBSM from Fig. 3 is given in Fig. 4.

In the respect to operations mapping (Eq. 3), CBRM has
two operational modes. First, initialization mode, when
coefficient bits are entered into the CBRM, and the second,
run mode, when CBRM is feeding array with coefficient
bits.

The CBSM is implemented as two-dimensional array of
latches where each latch stores one bit of the coefficient
(Fig. 4). The number of rows is equal to the number of
folding sets in FBSM (k) while the number of columns is
equal to the FBSM’s folding factor (N). Output from each
row is feeding one folding set of the folded array with
coefficient bits. Rows are implemented as shift registers, so
during the run mode coefficients rotate through the rows
from right to left, feeding each folding set of folded array
with coefficient bits in correct order (solid arrows in Fig. 4).

Problem of providing the correct bit order, during
initialization mode, can be solved using the property of
modulo dependence in (3). Due, the trace of the first
coefficient bit can be described with mapping of time

instances t∈{1,2,…,k⋅N} onto the array position [α,β]:

0
1−ckc

α=((t-1) mod k)+1

β=((t-1) mod N)+1.

The number of clock cycles, required for initializing the
structure, is k⋅N.

IV. FUNCTIONAL DESCRIPTION

Folding sets S0,S1,…,Sk-1 are shown in dashed boxes
(Fig. 2). Each folding set contains N operations. In order to
clarify the folded FIR filter method of operation, the
hardware section that performs the operation from set SS
(s=0,1,…,k-1) is also denoted with SS. Initially, the
computation starts in folding set S0 where the product
20⋅ckc-1

0⋅x0 is obtained in the first clock cycle. In the next
clock cycle folding set S1 generates the partial product
21⋅ckc-1

1⋅x0 adding previously computed partial product
from S0. Thus, the value (20⋅ckc-1

0⋅x0)+(21⋅ckc-1
1⋅x0) is

1 2 m m+1 m+2 2m (k-1)m+1 (k-1)m+2 k m

Fig. 1. Transformed DFG

entered into the next section, which performs the
operations from S2, in the third clock cycle. The next
important time instance is (k+1)st clock cycle. In that clock
cycle both input data path and summation path are folded
from section Sk-1 to S0. In input data path 2k⋅x0 is present at
input of the section S0, while in the summation path
(20⋅ckc-1

0⋅x0)+(21⋅ckc-1
1⋅x0)+...+(2k-1⋅ckc-1

k-1⋅x0) enters the same
section. S0 adds 2k⋅ckc-1

k⋅x0 to the entered sum. But the
computation for the coefficient ckc-1 is not finished yet.

The complete product ckc-1x0 is obtained in the section
S(mc-1) mod k during clock cycle mc. The computation of
ckc-2x1 starts in (mc+1)st clock cycle. The section Smc mod k
computes

{t=N +0}
{t=i* }

l
m

l=1,2,3,...
i=1,2,3,...

{t /= N +0}
{t /= i* }

l
m

IDEM

{N-1}

{0,1,2,...,N-2}

x

y0

2

S S S

2 2

2 2 20 1 k-1

c c c

c

 N

{0} {0} {0}
{1} {1} {1}

{N-1} {N-1} {N-1}

c
k -1c c

c

c

c

c

m -1

k -1

k -1

k -1

Fig. 2. Folded FIR filter architecture with changeable number of coefficients and coefficient length

{(20⋅ckc-1
0x0)+(21⋅ckc-1

1⋅x0)+...+(2mc-1⋅ckc-1
mc-1⋅x0)}+ +20⋅ckc-2

0⋅x1=

= (ckc-1x0)+(2mc-1⋅ckc-2
0⋅x1).

The first completely generated result at output is y0 with
latency 2mc-N clock cycles. New result y is generated every
N clock cycles. The data flow example that illustrates
described process of computation is shown in Fig. 5.

The proposed architecture supports the operation with
changeable number of coefficients and coefficient length.

V. IMPLEMENTATION

The implementation is done onto the FPGA Spartan II
s200-5pq208 with aim to illustrate what filtering can be
carried out onto the one folded programmable architecture.
The Table I illustrates the abilities of one implemented
architecture with n=8, k=8, Nmax=16 and y=27 (y stands for
implemented length of output word).

Table I gives the implementation results for clock
period, throughput and initial latency for possible
programmed values of kc and mc taking into account chosen
folding factor N (Nmax≥N≥1). Using the data from Table I,
the graphical representation in Fig. 6 that describes the
throughput as a function of chosen folding factor, is
generated. Increasing of throughput is achieved by
decreasing of folding factor. Table I also contains values

for initial latency as it is given by 2mc-N+AdderLatency.
The initial latency depends also on adder’s latency. In the

implemented example adder’s pipeline stages is equal to
adder’s length (y=27). The number of adder’s pipeline stages
remains the same regardless to the programmed values for kc
and mc.

TABLE I
POSSIBILITIES FOR CONFIGURATION OF THE ARRAY

k N kc mc Used Clock Throughput Initial latency
 slices [MHz] [clk] [MHz] [clk] [ns]

8 16 2 64 642 [25%] 86.69 16 12.28 139 707.51
 4 32 642[25%] 86.69 16 12.28 75 381.75

8 8 2 32 642[25%] 86.69 8 24.56 83 422.47
 4 16 642[25%] 86.69 8 24.56 51 259.59

8 4 2 16 642[25%] 86.69 4 49.12 55 279.95
 4 8 642[25%] 86.69 4 49.12 39 198.51

VI. DISCUSSION AND CONCLUSIONS

The transformation of source DFG for the bit-plane
architecture and proposed assignment of folding sets enable
the synthesis of fully pipelined folded FIR filter
architecture with changeable number of coefficients,
changeable coefficient length, and adjustable folding
factor. The derived architecture has kept desirable features
of source architecture such as extensive pipelining, high
regularity, truncation of LSBs of intermediate results
without any loss of accuracy. FPGA implementation of
proposed architecture proved the functionality of the
architecture and showed liner dependency of throughput as
a function of folding factor in fixed size arrays. tradeoffs
between throughput and occupation of on-chip resources as
well as to illustrate configuration capabilities of the folded
architecture. Proposed architecture allows designing of
flexible folded FIR filter array with fixed size that enables
efficient implementation of different wireless standards on
single filter.

REFERENCES

[1] L. Paulson, L. Garber, “Reconfiguring Wireless Phones with
Adaptive Chips”, IEEE Computer, Vol. 36, Number 9,
September 2003, pp. 9-11.

[2] P. Corsonello, S. Perri, and G. Cocorullo, "Area-Time-Power
Tradeoff in Cellular Arrays VLSI Implementations", IEEE
Transaction on Very Large Scale Integration (VLSI) Systems,
Vol. 8, No. 5, Oct. 2000, pp. 614-624.

[3] R. Lin, "Reconfigurable Parallel Inner Product Processor
Architectures", IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol.9, No.2, Apr. 2001, pp. 261-
272

[4] Robert Hawley, Bennett Wong, Thu-ji Lin, Joe Laskowski,
Henry Samueli, “Design Techniques for Silicon Compiler
Implementations of High-Speed FIR Digital Filters”, IEEE
Journal of Solid-State Circuits, Vol 31, No. 5, May 1996.

[5] Y-C. Lin, F-C. Lin, "Classes of Systolic Arrays for Digital
Filtering", Int. J. Electronics, Vol.70, No.4,1991,pp.729-737.

[6] K.K. Parhi, VLSI Digital Signal Processing Systems (Design
and Implementation), John Wiley & Sons, In., New York,
2000.

[7] T. C. Denk, K. K. Parhi, Synthesis of Folded Pipelined
Architectures for Multirate DSP Algorithms, IEEE
Transaction on Very Large Scale Integration (VLSI)
Systems, Vol.6, No. 4, Dec. 1998, pp. 595-607.

[8] D. Reuver, H. Klar, "A Configurable Convolution Chip with
Programmable Coefficients", IEEE Journal of Solid State
Circuits, Vol. 27, No. 7, July 1992, pp. 1121 -1123.

[9] I. Milentijevic, V. Ciric, O. Vojinovic, T. Tokic, “Folded
Semi-Systolic FIR Filter Architecture With Changeable
Folding Factor”, Neural, Parallel & Scientific Computations,
Dynamic Publishers, Atlanta, Vol.10, No2,2002, pp.235-247.

[10] I. Milentijevic, V. Ciric, “Assignment of Folding Sets for
Adaptive FIR Filtering on Folded Array”, Proceedings of the
WPS-DSD 2003, 29th EUROMICRO Conference, Belek,

00

0

0

Adder

00 000 00 000 00 000 00 000 0

x x x x x

yyyyyyy10 9 57 3

3

1

1

8 4

4

6 2

2

0

0

1

2

3

yy y y

clk

ck1
ck0

N=4

m =6c

parallel in

C
BS

M

0 1 0
0

1
1ck0

ck1

s

s

c

c

a

a

x

x

y

y

b

b

Fig. 3. Functional block diagram

Fig. 5. Data flow for folded architecture (k=3, N=4, kc =2 and mc=6)

1

2

3

serial in

[1,1]

[2,1]

[3,1]

[1,2]

[2,2]

[3,2]

[1,3]

[2,3]

[3,3]

[1,4]

[2,4]

[3,4]

Fig. 4. Coefficient Bit Supply Module – CBSM
N

T h ro u g h p u t [n s]

2 181 01 21 41 6 6 4

4 0

6 0

8 0

1 0 0

2 0

0
Fig. 6. Throughput as a function of chosen folding

Turkey, September 2003. pp. 21-22.

