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Abstract: The synthesis of new folded semi-systolic FIR filter architecture with changeable 
folding factor is presented in this paper. The transformation of the original data flow graph for 
the bit-plane architecture that enables the successful application of the folding technique with 
changeable folding sets is proposed. The application of folding technique at bit level that allows 
the implementation of changeable folding factor onto the fixed size array is described. The 
involving of changeable folding sets in the synthesized folded architecture allows the reducing of 
folding factor according to the coefficient length increasing the throughput of the folded system. 
The finding of suitable area-time tradeoffs for the folded semi-systolic FIR filter architecture is 
provided by presented synthesis procedure. 
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1.  Introduction 

Considerable attention has been placed on the implementation of signal processing algorithms 
in VLSI, ranging from full custom VLSI to general-purpose digital signal processors. A variety 
of approaches to custom implementation of Finite Impulse Response (FIR) filters have been 
pursued. In order to attain high performance, parallel implementation strategies such as systolic 
methods have been applied [1-4]. Thus, due to their geometrical regularity, they are suitable for 
VLSI implementations, either as stand-alone modules or as a part of complex digital data path. 
However, the design of such a processor inevitably faces the limitation of VLSI area available. 
Excessive use of VLSI area for such a processor would be prohibited by both cost and 
performance. Under a restricted VLSI area the design of such a processor often introduces a 
conflict between its versatility and computation speed [5].  

Advances in Field programmable Gate Array (FPGA) technology have enabled FPGAs to be 
used in a variety of applications. In particular, FPGAs prove particularly useful in data path 
designs, where the regular structure of the array can be utilized effectively. The programmability 
of FPGAs adds flexibility not available in custom approaches, while retaining relatively high 
system clock rates. Furthermore, the FPGA technology is ideal for rapid prototyping [6].  

It is well known that performances and cost of any digital circuit depend on circuit design 
style. Therefore, creating a given architecture, to establish optimal area-time-power tradeoff, a 
careful choice of circuit design style to use is necessary. In synthesizing DSP architectures, it is 
important to minimize the silicon area of the integrated circuits, which is achieved by reducing 
the number of functional units (such as multipliers and adders), registers, multiplexers, and 
interconnection wires. The folding transformation is used to systematically determine the control 
circuits in DSP architectures where multiple algorithm operations are time multiplexed to a single 
functional unit 7. By executing multiple algorithm operations on a single functional unit, the 



number of functional units in the implementation is reduced, resulting in integrated circuit with 
low silicon area [8]. 

As a starting architecture for the synthesis of the Folded bit-plane FIR filter architecture with 
changeable folding sets we use well-known bit-plane architecture (BPA). The BPA is highly 
regular architecture, which allows extensive pipelining, regular layout, high computational 
throughput, truncation of Least Significant Bits (LSBs) of intermediate results without any loss of 
accuracy, and programmability of coefficients [9,10].  

The goal of this paper is to present the application of folding technique to the bit-plane 
systolic FIR filter architecture that enables the implementation of changeable folding sets onto 
the fixed size array. The involving of changeable folding sets and changing of the folding factor 
are aimed to the increasing of versatility of bit plane-arrays. In this paper we describe the 
complete synthesis path from the source DFG to the target architecture. The proposed application 
of folding technique should enable the finding of suitable area-time tradeoffs for bit-plane 
architecture keeping all desirable features of the source architecture and to provide wider 
application area for the synthesized folded semi-systolic architecture.  

The paper is organized as follows: section 2. describes the BPA as a basic architecture; the 
section 3. contains basic principles of folding technique; in the section 4. we give the synthesis of 
folded architecture as well as the transformation of the original DFG for the BPA that enables the 
application of folding technique; in the section 5 concluding remarks are given.  

 

2.  Bit-plane FIR filter architecture 

Output words { }iy FIR filter are computed as 

 1i-kk-1i-11i0i xcxcxcy ++++=   ...      , (1) 
where 110 ...,,, −kccc are coefficients while { }ix  are input words. 

The bit–plane architecture (BPA) is semi-systolic architecture that provides regular 
connections with extensive pipelining and high computational throughput. The BPA is basic 
architecture for synthesis of folded architecture (FA), so we give a brief description of the BPA. 
In order to explain the BPA following notation is adopted: 

m – coefficient word length, 
k – number of coefficients ( )110 ...,,, −kccc , and 

j
ic – bit of coefficient ic (with weight j2 ). 

The BPA is obtained by resorting of the partial products of different multipliers as it is shown 
in Fig. 1.  

 
Figure 1. The DFG (Data flow graph) for the BPA with k=3 and m=4 

 
With fine-grained pipelining, the splitted parts of the multiplications become input word times 
b−1 coefficient multiplications, the partial products. These are just logical AND function between 

the input word and coefficient bit. In the first bit–plane the least significant partial products of all 
coefficients are computed and accumulated (Fig. 1). The output of the first bit–plane is shifted by 



one weight and then the second lowest significant partial products are processed in the second bit 
plane and so on [9, 10]. Starting bit-plane processing with the LSB’s first, enables to truncate one 
LSB of the intermediate output signal after each bit–plane without any loss of accuracy in the 
more significant weights. We choose this architecture as a basis for the synthesis of the fully 
pipelined folded FIR filter architecture.  

After this short description of the BPA as a source architecture and involving of suitable 
notation, let us to introduce the basic elements of folding technique. 

 

3.  Basic elements of folding technique 

The folding technique is introduced by K.K. Parhi and described in [7, 8]. With aim to clarify 
the applying of folding technique to the BPA we give a brief review of folding transformation. 

The synthesis of folded data path is explained in Fig. 2 a) and Fig. 2 b). Fig. 2 a) shows an 
edge VU → with )(w e  delays, while Fig. 2 b) depicts the corresponding folded data path. The 
data begin at the functional unit uH which has uP pipelining stages, pass through 

 ( ) ( ) uvPeNwVUD uF −+−=→  (2) 
delays, and are switched into the functional unit vH at the time instances vNl + , where N is the 
number of operations folded to a single functional unit (folding factor), while u and v are the 
folding orders of nodes U and V that satisfy 0,1 ≥≥− vuN .  

 
(a) An edge VU → with ( )ew delays;  (b) The corresponding folded data path 

Figure 2. The synthesis of folded data path. 
 

A folding set, S , is defined as an ordered set of operations, which contains N entries, executed 
by the same functional unit. For a folded system to be realizable, ( ) 0≥→VUDF  must hold for all 
of the edges in the DFG. Once valid folding sets have been assigned, retiming can be used to 
satisfy this property or determine that the folding sets are not feasible [7]. 

 

4.  Synthesis of folded architecture  

The BPA cannot be transformed into the folded bit-plane architecture by direct application of 
folding technique. It is obvious, from Fig. 1, that multiplications of coefficients and input words 
cannot be recognized as operations, i.e. nodes in the DFG, because the algorithm is based on the 
resorting of partial products. It implies that it is necessary to apply the folding technique at bit-
level. Each multiplication node in the DFG, shown in Fig. 1, represents one row of basic cells 
(full adder and AND gate). Thus, one multiplication is distributed through the whole array. Even, 
if we declare forming of all partial products in row as one "row" operation we can not apply 
folding technique successfully, because there are delays both in input data path and summation 
path which are obstacles for satisfying of conditions ( ) 0≥→ VUDF .  

Therefore, we suggest the transformation of source architecture that will enable the successful 
application of folding technique and the involving of changeable folding sets. The successful 



application assumes that the hardware size is reduced approximately for the factor N  at the cost 
of time, and that the derived architecture keeps all desirable features especially fine-grain 
pipelining.  

Let us start from the transfer function that corresponds to the DFG for the BPA ( 4;3 == mk ) 
shown in Fig. 1: 
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The general form of transfer function for k taps and m bit coefficient word length is 
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The same transfer function without brackets can be rewritten as follows 
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If we reorder partial products according to the jz − , ( )zG  is of the form: 
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The developed form of equation (4) is  
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The corresponding DFG for equation (5) is shown in Fig. 3. In other words the transformation 

of the transfer function from (3) to (5) is performed according to the following scenario.  

 
Figure 3. Transformed DFG that enables the application of folding technique 

 
The following implications onto the DFG shown in Fig. 1: 
- delays between planes are removed, as well as delays in the addition path; while the delays 

inside the plane are added; 
- instead of multiplications by 1/2 in the addition path, multiplication by 2 are involved in the 

input data path; 
- partial products are resorted, i.e. coefficient bits from each coefficient are collected 

separately and delays are involved in the input data path; 
- removing of delays from input data path to the addition path followed by reverse ordering of 

coefficients. 
This paper gives the mathematical path that proves the correctness of the proposed 

transformation, while the generalized scenario, as 5-step synthesis procedure, at the DFG level 
can be found in [11]. 

The architecture with transformed DFG from Fig. 3 is impractical for implementation because 
of broadcast line at input data path, but TDFG is well prepared for further application of folding 
technique. Besides the deriving of suitable DFG for folding the important issue is the setting of 
folding sets. The folding sets are formed as it is shown in Fig. 3. The operations, which will be 



folded, are denoted with dashed lines. One operation from TDFG assumes forming of partial 
products and the addition performed on one "row" of basic cells, (where basic cell contains AND 
gate and full adder). There are k folding sets, 1210 ...,,,, −kSSSS , and the number of folding sets is 
equal to the number of taps. Each folding set contains m operations, i.e. the folding factor, N , is 
equal to the coefficient length, mN = . Thus, folded equations (2) for the determined folded sets, 
where 0=UP and U and V are nodes in TDFG from Fig. 3 denoted with kmmm ...,,1,...,,2,1 +  are  

 
 ( ) 1010021 =−+−⋅=→ mDF  

 ( ) 1120032 =−+−⋅=→ mDF  

 ... 
 ( ) ( ) ( ) 121001 =−−−+−⋅=→− mmmmmDF  

 ( ) ( ) 110011 =−−+−⋅=+→ mmmmDF  

 ( ) 1010021 =−+−⋅=+→+ mmmDF  

 ... 
 ( ) ( ) ( ) 12100212 =−−−+−⋅=→− mmmmmDF  

 ( ) ( ) 11001122 =−−+−⋅=+→ mmmmDF  

 ( ) 101002212 =−+−⋅=+→+ mmmDF  

 ... 

 ( ) ( ) ( ) 121001 =−−−+−⋅=→− mmmkmkmDF .  

 
The condition ( ) 0≥→VUDF is satisfied, for each pair of connected nodes ( VU , ), and it proves 

that TDFG from Fig. 3 is well prepared for folding. The obtained folded architecture (FA) with 
k taps is presented in Fig. 4. 

 
. . .

. . .

 
Figure 4. Folded architecture with folding sets 0S , 1S , ..., 1−kS  

 
In order to implement changeable folding sets, i.e. to enable the changing of folding factor we 

have derived folded architecture in the general form with k taps and coefficient length m , 
neglecting the input data width. The duration of computation in each tap depends on the 



coefficient length m . So, the changing of coefficient length does not change the number of 
folding sets, but changes the number of folded operations in folding sets (Fig. 4). 

 

5.  Conclusion 

The synthesis of new folded semi-systolic FIR filter architecture with changeable folding 
factor is presented in this paper. The transformation of the original data flow graph for the bit-
plane architecture that enables the successful application of the folding technique with 
changeable folding sets is proposed. The proposed transformation of source DFG for the bit-
plane architecture enables the synthesis of fully pipelined folded FIR filter architecture with 
changeable folding factor. Hardware size is reduced approximately for the factor m at the cost of 
time. Throughput is decreased for slightly more than m times in respect to the BPA. The number 
of basic cells is reduced to the number of basic cells in one plane of source architecture. The 
derived architecture has kept desirable features of source architecture such as extensive 
pipelining, high regularity, truncation of LSBs of intermediate results without any loss of 
accuracy. 

The involving of changeable folding sets in the synthesized folded architecture allows the 
reducing of folding factor according to the coefficient length increasing the throughput of the 
folded system. The finding of suitable area-time tradeoffs for the folded semi-systolic FIR filter 
architecture is provided by presented synthesis procedure. 
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