
282 Proceedings of the Second International Conference on Informatics and Information Technology

FOLDED BIT-PLANE ARCHITECTURES

I. Milentijević1, I. Nikolić1, O. Vojinović1, V. Đirić2 and T. Tokić1
1Faculty of Electronic Engineering, University of Niš,
Beogradska 14, PO Box 73, 18000 Niš, Yugoslavia

{milentijevic, fika, oliver}@elfak.ni.ac.yu
2A.D. Tigar, Pirot, Yugoslavia

mciric@tigar.com

Abstract: This paper describes the application of folding technique to the bit-
plane systolic FIR filter architecture. We present two additional transformations
of original DFG (Data Flow Graph) that enable the application of folding tech-
nique and the synthesis of two different folded architectures. One without latches
in carry and sum paths suitable for the filtering with small number of coefficients
and the other with greater hardware complexity which is fully pipelined.

Keywords: systolic arrays, folding technique, FIR filtering

1. Introduction
Finite Impulse Response (FIR) filters have been widely used for video rate digi-
tal filtering. Regular structure of FIR filter algorithm is suitable for implementa-
tions on systolic arrays (Lin, 1991). Pipelined cellular arrays represent an appro-
priate implementation approach for arithmetic circuits where a high computa-
tional speed is required (Milentijevic}, 1996, 1998). They are designed in the
form of regularly repeated patterns of identical circuits. Thus, due to their geo-
metrical regularity, they are suitable for VLSI implementations, either as stand-
alone modules or as a part of a complex digital data path (Corsonello, 2000).
The operations of a FIR filtering can be arranged to a sequential summation of
the products using the transposed direct form. However, the approach is limited
by the speed of the multipliers. To overcome this deficiency it is common to
pipeline multipliers and to combine multiplications and the accumulation of
products into an array. This is the basic principle of Bit-Plane Architecture
(BPA) (Noll, 1986, Reuver, 1992). The BPA is highly regular architecture,
which allows extensive pipelining, regular layout, high computational through-
put, truncation of Least Significant Bits (LSBs) of intermediate results without
any loss of accuracy, and programmability of coefficients. All these features
point why the BPA is our candidate for application of folding technique.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 283

It is well known that performances and cost of any digital circuit depend on cir-
cuit design style. Therefore, creating a given architecture, to establish optimal
area-time-power tradeoff, a careful choice of circuit design style to use is neces-
sary. In synthesizing DSP architectures, it is important to minimize the silicon
area of the integrated circuits, which is achieved by reducing the number of func-
tional units (such as multipliers and adders), registers, multiplexers, and inter-
connection wires. The folding transformation is used to systematically determine
the control circuits in DSP architectures where multiple algorithm operations are
time multiplexed to a single functional unit (Parhi, 2000). By executing multiple
algorithm operations on a single functional unit, the number of functional units in
the implementation is reduced, resulting in integrated circuit with low silicon
area (Denk, 1998).
The aim of this paper is the synthesis of folded FIR filter architecture based on
the BPA. However, the folding transformation can not be applied in a straight-
forward manner, because the algorithm is based on resorting of partial products.
Multiplication cannot be represented as node in the data flow graph (DFG)
(Milentijevic}, 2001). Here, we propose the additional transformations of source
DFG, based on retiming and reordering of partial products, in order to enable the
application of folding transformation. After that, we describe the application of
folding technique and present derived folded architectures.

2. Folding technique
The folding technique is introduced by K.K. Parhi and described in (Parhi, 2000,
Denk 1998). With aim to clarify the applying of folding technique to the BPA we
give a brief review of folding transformation.
The synthesis of folded data path is explained in Fig. 1 a) and Fig. 1 b). Fig. 1 a)
shows an edge U→V with w(e) delays, while Fig. 1 b) depicts the corresponding
folded data path. The data begin at the functional unit Hu which has Pu pipelining
stages, pass through
 DF(U→V) = Nw(e)-Pu + v – u (1)
delays, and are switched into the functional unit Hv at the time instances Nl+v,
where N is the number of operations folded to a single functional unit (folding
factor), while u and v are the folding orders of nodes U and V that satisfy N-1 ≥
u, v ≥ 0 [8]. A folding set, S, is defined as an ordered set of operations, which
contains N entries, executed by the same functional unit. For a folded system to
be realizable, DF(U→V) ≥ 0 must hold for all of the edges in the DFG. Once
valid folding sets have been assigned, retiming can be used to satisfy this prop-
erty or determine that the folding sets are not feasible (Parhi, 2000).

284 Proceedings of the Second International Conference on Informatics and Information Technology

a) An edge U→V with w(e) delays b) The corresponding folded data path.

Figure 1: The synthesis of folded data path

After this short description of folding technique and involving of suitable nota-
tion, let us to introduce the source architecture (BPA).

3. Bit-plane architecture
Output words {yi} FIR filter are computed as
 yi = c0xi + c1xi-1 + ... + ck-1xi-k+1, (2)
where c0, c1, ..., ck-1 are coefficients while {xi} are input words.
Computation (2) can be realized in different manners. When high performances
are required systolic arrays are frequently used. Semi-systolic array share with
systolic arrays desirable simplicity and regularity properties, in addition to their
pipelining and multiprocessing schemes of operation. The only difference is that
the broadcasting of data to many PEs in one time step is allowed in semi-systolic
arrays, while systolic arrays are restricted to temporal locality of communication.
Also, the existence of some additional connections can be allowed for semi-
systolic architectures (Milentijevic, 1996).
The bit–plane architecture (BPA) is semi-systolic architecture which provides
regular connections with extensive pipelining and high computational through-
put. The BPA is basic architecture for synthesis of folded architecture (FA), so
we give a brief description of the BPA. In order to explain the BPA following
notation is adopted:
m – coefficient word length,
k – number of coefficients (c0, c1, ..., ck-1),
ci

j – bit of coefficient ci (with weight 2j, and
n – input word length.
The BPA is obtained by resorting of the partial products of different multipliers
as it is shown in Fig.2.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 285

Figure 2: The DFG (Data Flow Graph) for the BPA with k=3 and m=4

With fine-grained pipelining, the splitted parts of the multiplications become in-
put word times 1-b coefficient multiplications, the partial products. These are just
logical AND function between the input word and coefficient bit. In the first bit–
plane the least significant partial products of all coefficients are computed and
accumulated (Fig. 2.). The output of the first bit–plane is shifted by one weight
and then the second lowest significant partial products are processed in the sec-
ond bit plane and so on (Noll, 1986, Reuver, 1992). Starting bit-plane processing
with the LSB’s first, enables to truncate one LSB of the intermediate output sig-
nal after each bit–plane without any loss of accuracy in the more significant
weights. We choose this architecture as a basis for synthesis of folded FIR filter
architectures.

4. Synthesis of folded architectures
The folding transformation cannot be applied to the BPA directly (Fig. 2.), be-
cause the algorithm is based on resorting of partial products, so that multiplica-
tions of coefficients and input words are not recognized as operations, i.e. nodes
in DFG (Fig. 2.). Each multiplication node in the DFG, shown in Fig. 2., repre-
sents one raw of basic cells (full adder and and gate) in the array. Thus, one mul-
tiplication is distributed through the whole array. Also, additions are performed
in rows of basic cells and accumulation is provided by carry–save arithmetic
along the array.
Our idea is to declare all operations in one plane to one operation “plane” and to
provide time multiplexing to a single functional unit. In order to do that, we have
to transform DFG from Fig. 2. Transformed DFG is shown Fig.3. Delays be-
tween planes are removed, as well as delays in the addition path. It allows simul-
taneous operation of plane units, but requires additional latches inside the plane.
Transformed DFG is not suitable for implementation because of broadcasting
line for input data words, but it is well prepared for folding.
Planes in the transformed DFG are denoted with dashed lines (Fig. 3). There is
only one folding set S={1,2,3,4} which contains 4 operations "plane". The fold-
ing factor is equal to the coefficient length, i.e. N=m=4. There is internal pipelin-
ing, Pint, in each plane Pint = k-1 = 2 , but planes are connected via broadcast line
for input words (without delays) and addition path (without delays, too). Thus,

286 Proceedings of the Second International Conference on Informatics and Information Technology

folding equations (1) for the determined folding set (Fig. 3.), where w(e)=0 and
Pv=0, are
DF(1→2) = 4⋅0 - 0 + 1 - 0 =1
DF(2→3) = 4⋅0 - 0 + 2 - 1 =1
DF(3→4) = 4⋅0 - 0 + 3 - 2 =1.
The condition DF(U→V) ≥ 0 is satisfied and additional retiming is not needed.
Finally, transformed DFG from Fig. 3. is mapped to the folded architecture (Fig.
4.).

Figure 3: Transformed DFG - TDFG1 with k=3 and n=4

Figure 4: Folded architecture FBPA with folding set S={1,2,3,4}

Data flow for this example is given in Fig. 5., where XA, XB and XC describe the
presence of input data words at first, second and third row of cells, respectively,
while C shows which coefficient bits are used. After the entering of new input
word at first clock period all coefficient bits with weight 20 are available, zero
values are passed through the entering multiplexers and sums of partial products
are computed. At second clock period those sums are shifted for one weight right
and reentered to the array for summation with partial products of weight 21. At
the m-th clock period coefficient bits with weight 2m-1 are involved. Partial prod-
ucts with corresponding input words are formed and summations are performed.
During the (m+1)-st clock period the result is obtained and new input value is
entered. Each m clock periods one resulting y is generated (in Fig. 4. and Fig. 5.
m=4). The initial latency for this architecture is m clock periods.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 287

Figure 5: Data flow for the FBPA (k=3, m=4)

However, the BPA is suitable for the filtering with small number of coefficients,
because the proposed transformation, TDFG1 (Fig. 3), removes latches in carry
and sum paths. Thus, the pipelining inside the plane is not employed and the
critical path depends on the plane length, i.e. number of coefficients. It motivated
us to find another solution for folding of the BPA which will enable the synthesis
of fully pipelined folded BPA (FPFBPA).
Now, the crucial question is how to form the folding sets. The TDFG1 enables
the existence of only one folding set S={1,2,3,4} with four ”plane” operations.
Let us back to the Fig. 3. Suppose that we have obtained TDFG1, but that we had
not formed folding sets yet. If we remove multiplications by ½ from addition
path we should involve multiplications by 2 in input data path. It is shown in Fig.
6. The next step is the resorting of partial products collecting all coefficient bits
from each coefficient, separately. Now, we have different “plane” from the
“plane” in the BPA. This resorting requires delays in input data path. Fig. 7 de-
picts this step. The DFG from Fig. 7 is not prepared for folding, yet. The obstacle
is the existence of latches in input data path. The last step, before folding, shown
in Fig. 8 assumes the removing of delays from input data path and their involving
into the addition path. This is followed by reverse ordering of coefficients. Fi-
nally, we have well prepared DFG, TDFG2, for application of folding technique.
The folding sets are formed as it is shown in Fig. 8. The operations which will be
folded are denoted with dashed lines. For the BPA with k=3 and m=4 there are
three folding sets S1, S2 and S3 each of them containing four operations.

288 Proceedings of the Second International Conference on Informatics and Information Technology

Figure 6: The involving of multiplications in the input data path

Figure 7: The resorting of partial products collecting all coefficient bits

Figure 8: Transformed DFG – TDFG2 with k=3 and n=4

One operation from the TDFG2 (Fig. 8) includes the set of AND gates and full
adders from the source BPA. The folding factor is equal to the coefficient length,
N=m=4. Thus, folding equations (1) for determined folding sets are
 DF(1→2) = 4⋅0 - 0 + 1 - 0 =1,
 DF(2→3) = 4⋅0 - 0 + 2 - 1 =1,
 DF(3→4) = 4⋅0 - 0 + 3 - 2 =1,
 DF(4→5) = 4⋅1 - 0 + 0 - 3 =1,
 DF(5→6) = 4⋅0 - 0 + 1 - 0 =1,
 DF(6→7) = 4⋅0 - 0 + 2 - 1 =1,
 DF(7→8) = 4⋅0 - 0 + 3 - 2 =1,
 DF(8→9) = 4⋅1 - 0 + 0 - 0 =1,
 DF(9→10) = 4⋅0 - 0 + 1 - 1 =1,

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 289

 DF(10→11) = 4⋅0 - 0 + 2 - 2 =1,
 DF(11→12) = 4⋅0 - 0 + 3 - 3 =1.
The condition DF(U→V) ≥ 0 is satisfied and it proves that TDFG2 is well pre-
pared for folding. Obtained fully pipelined folded bit-plane architecture,
FPFBPA, is presented in Fig. 9, while Fig. 10 describes data flow through the
FPFBPA.

Figure 9: Folded architecture FPFBPA with folding sets S1, S2 and S3

Both FBPA and FPFBPA are described as parameterized FIR filtering cores in
VHDL and functionality is proved thorough the logic simulation.

290 Proceedings of the Second International Conference on Informatics and Information Technology

Figure10: Data flow for the FPFBPA (k=3, m=4)

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 291

5. Discussion
The first transformation (Fig. 3.) leads to the folded architecture FBPA where all
operations are folded to the one “bit-plane” operation. The array is restricted for
the factor m, where m is the length of coefficient. There is no internal pipelining
and the critical path depends on number of coefficients. The number of basic
cells (basic cell contains full adder and and gate) is reduced to the number of ba-
sic cells in one plane of source architecture, and the number of latches for carry
and sum paths is reduced only to the latches used in one row of source array. The
throughput of the FBPA should be decreased approximately (k-1) x m times in
respect to the BPA. The FBPA is suitable only for the FIR filtering with small
number of coefficients. The second transformation (Fig. 6, Fig. 7 and Fig. 8),
which is more complex then first one, enables the synthesis of fully pipelined
folded FIR filter architecture, FPFBPA. There are k folding sets, i.e. the number
of folding sets is equal to the number of coefficients. Each folding set contains m
operations. The array is restricted for the factor m. The number of basic cells is
reduced to the number of basic cells in one plane of source architecture. Also, the
total number of latches corresponds to the number of latches in one plane of the
BPA. The extensive pipelining in FPFBPA is paid by involving two multiplexers
per each basic cell. The critical path is extended for one additional multiplexer,
so the basic clock frequency is slightly decreased. Thus, the execution time is
increased for slightly more than m times in respect to the BPA.

6. Conclusion
The synthesis of two folded FIR filter architectures based on the bit-plane archi-
tecture is presented in this paper. The transformations of the source DFG (for
BPA) that enable the application of folding technique are proposed. The derived
architectures are described and discussed. The application of folding technique to
the bit-plane architecture allows achieving of throughput requirements for FIR
filtering on integrated circuits with low silicon area.

7. References
1. Corsonello P., Perri S., and Cocorullo G., "Area-Time-Power Tradeoff in

Cellular Arrays VLSI Implementations", IEEE Transaction on Very Large
Scale Integration (VLSI) Systems, Vol. 8, No. 5, Oct. 2000, pp. 614-624.

2. Denk T. C., Parhi K. K., "Synthesis of Folded Pipelined Architectures for
Multirate DSP Algorithms", IEEE Transaction on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 6, No. 4, Dec. 1998, pp. 595-607.

3. Lin Y-C., F-C, "Classes of Systolic Arrays for Digital Filtering", Int. J. Elec-
tronics, Vol. 70, No. 4, 1991, pp. 729-737.

292 Proceedings of the Second International Conference on Informatics and Information Technology

4. Milentijevi} I., Milovanovi} I., Milovanovi} E., To{i} M., Stojčev M., "Two
- Level Pipelined Systolic Arrays for Matrix - Vector Multiplication", Jour-
nal of Systems Architecture, The EROMICRO Journal, Vol. 44, No. 5, Feb.
1998, pp. 383 -387.

5. Milentijevi} I., Stojčev M. S., Maksimovi} D., "Configurable Digit - Serial
Convolver of Type F", Microelectronics Journal, Vol. 27. No. 6, Sep. 1996,
pp. 559-566.

6. Milentijević I., Tokić T., Nikolić I., Vojinović O., and Širić V., "Synthesis of
Folded FIR Filter Architecture With Reordered Partial Products", Proceed-
ings of a Workshop on Computational Intelligence and Informational Tech-
nologies, June 20-21, Ni{, Yugoslavia, 2001, pp. 155-160.

7. Noll T.,”Semi-systolic Maximum Rate Transversal Filters with Programma-
ble coefficients", Workshop of Systolic Architectures, Oxford, 1986, pp. 103-
112.

8. Parhi K. K., VLSI Digital Signal Processing Systems (Design and Implemen-
tation), John Wiley & Sons, In., New York, 2000.

9. Reuver D., Klar H., "A Configurable Convolution Chip with Programmable
Coefficients", IEEE Journal of Solid State Circuits, Vol. 27, No. 7, July
1992, pp. 1121 -1123.

