
Family of Folded
Bit-Serial Multipliers

Vladimir M. Ciric 1, Ivan Z. Milentijevic 2, Oliver M. Vojinovic 3, Teufik I. Tokic 4

1Abstract – The synthesis of new family of folded bit-serial
multipliers for integer multiplication is presented in this
paper. Folding technique is applied to serial-parallel serial
multiplier architecture. The resulting architecture can operate
with operands of arbitrary length. In order to illustrate
functionality of proposed architecture the preliminary results of
FPGA implementation are given.

Keywords – systolic arrays, array multipliers, folding
technique.

I. INTRODUCTION

In several cases, it is senseless to use a bit-parallel circuit: it
has an important cost in area and runs faster than the
throughput required by the application. In these cases, the bit-
serial approach became an important alternative for efficient
implementation of custom Digital Signal Processing (DSP)
circuits [1].

Modern VLSI technology allows integrating massive parallel
systems on a single chip. The area limitations for the
processors of such systems require small but efficient
computational units. Particularly, in public-key cryptography
special features are required for multiplier units. In RSA
encryption and decryption, large integers (typically 1024 bits
or more) must be multiplied, and in elliptic curve
cryptosystems, a multiplication in finite fields is required. In
contrast to cryptography, operands in signal processing
applications are usually short, e.g. 8-bit pixels [2]. A
parameterized family of folded bit-serial multipliers that covers
all these applications is presented in this paper.

As a source architecture, which provides a starting point in
the synthesis procedure, standard bit-serial multiplier is
chosen. The multiplier is characterized with serial input;
parallel bit-level processing, and serial output - SPS multiplier
[3].

This paper is organized as follows: Section 2 gives a brief
review of folding technique. Basic SPS multiplier architecture
is described in Section 3. In Section 4, the synthesis

1 Vladimir M. Ciric is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Serbia and Montenegro, E-mail:
vciric@elfak.ni.ac.yu
2 Ivan Z. Milentijevic is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Serbia and Montenegro, E-mail:
milentijevic@elfak.ni.ac.yu
3 Oliver M. Vojinovic is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Serbia and Montenegro, E-mail:
oliver@elfak.ni.ac.yu
4 Teufik I. Tokic is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Serbia and Montenegro, E-mail:
fika@elfak.ni.ac.yu

procedure of folded bit-serial multipliers family is given.
Section 5 covers the functional description of folded
architecture while in Section 6 we give preliminary results of
FPGA implementation. Section 7 is concerned with discussion
and conclusions.

II. FOLDING TECHNIQUE

The folding technique is introduced by K.K. Parhi and
described in [4, 5]. With aim to clarify the technique of
applying of folding technique, we give a brief review of
folding transformation.

The synthesis of folded data path is explained in Fig. 1 a)
and Fig. 1 b). Fig. 1 a) shows an edge VU → with)(w e
delays, while Fig. 1 b) depicts the corresponding folded data
path. The data begin at the functional unit uH that has

uP pipelining stages, pass through

1 () () uvPeNwVUD uF −+−=→ (1)

delays, and are switched into the functional unit vH at the

time instances vNl + , where N is the number of operations
folded to a single functional unit (folding factor),
while u andv are the folding orders of nodes U and V that
satisfy 0,1 ≥≥− vuN .

 Fig. 1. The synthesis of folded data path: (a) An edge
VU → with ()ew delays; (b) The corresponding folded data path

A folding set, S , is defined as an ordered set of operations,
which contains N entries, executed by the same functional
unit. For a folded system to be realizable () 0≥→ VUDF
must hold for all of the edges in the DFG. Once valid folding
sets have been assigned, if this property in not satisfied,
retiming technique has to be used.

Since the folding technique will be applied to SPS
multiplier, the short description of SPSM architecture is given
in the next section.

III. THE BASIC MULTIPLIER

The Data Flow Graph (DFG) that represents the SPS
multiplier is given in Fig. 2. Processing elements (PEs) are
denoted with dashed lines. SPS multiplier consists of aLa PEs,

while La represents the length of operand a. Each PE is
marked with i (0≤i≤La-1) in bottom-left corner and consists
one AND gate and one full adder (Fig. 2). Before the start of
multiplication, operand (a) has to be available at parallel input
aLa-1 , aLa-2 ,…, a0, with the LSB at left first position, bearing in
mind that the length of operand a is La. Second operand b,
which has a length Lb, is entered into the multiplier in LSB-
first manner. In each clock cycle i one bit bi of operand b is
processed. It is multiplied by a using AND operation
simultaneously in all PEs . The result is added to the current
sum, and new intermediate result is computed.

La-1 La-2 La-N

La-N-1 1 0

b , b , b , ... , bL -1 L -2 L -3 0

'0'

aL -1a

b b b

a a

a a a

L -2 L -N

L -N-1 1 0

a a

a

 Fig. 2. DFG representation of Serial-Parallel Serial Multiplier

Since the carry save arithmetic is implemented intermediate
result is available in two binary words: s-word and c-word.

The next bit bi+1 of b is processed in the next clock cycle.
Since the intermediate result has to be multiplied by 2, the
intermediate is shifted for one position to the right before the
new product is added. Shift operation is preformed by
propagation of the sum bits to the next right neighbor. Carry
bit loops provide the processing of carries in the same
processing element. The shift operation gives one resulting bit
at the output of the rightmost full adder. Thus the i-th bit of
the final product is obtained.

Introduced architecture is highly regular and contains
broadcast line. It is a very suitable architecture for application
of folding technique.

IV. SYNTHESIS OF FOLDED ARCHITECTURE

In order to provide the reducing of chip area and to enable
the changing of operand’s length in fixed folded multiplier
architecture we propose a new mapping of operations onto the
DFG nodes (processing elements). Let us note that N will
stand for folding factor while k for the number of processing
elements in the folded multiplier.

The multiplier described in the previous section multiplies
two unsigned integers. With aim to keep the functionality of
architecture and to involve features that folding technique
brings, we start with application of folding technique, in
general form, with assigning of folding sets on the basic
architecture.

Folded architecture should consist of k PEs, so the number
of involved folded sets has to be equal to k . Total number of

multiplication operations per clock cycle in basic architecture
is La, so the folding factor can be computed as:
2 N = La/k. (2)

The assignment of folding sets on DFG from Fig 2 is done
according to following rules:

1. First N operations starting from the leftmost PE
belong to folding set Sk-1;

2. Operation denoted with La-1 in Fig. 2 is the first
operation in the folding set Sk-1 (Sk-1|N-1);

3. Operation denoted with La-2 is the second operation
in the folding set Sk-1 (Sk-1|N-2);

4. N-th operation, counted from the left, is the last
operation in folding set Sk-1 (Sk-1|0);

5. (N+1)-st operation belongs to folding set Sk-2

(Sk-2|N-1);
6. The rightmost operation belongs to folding set S0

(S0|0).
As the basic architecture (Fig. 2) is highly regular, for

results of folding Eq. (1) we differ two cases. The first case
occurs when folding Eq. (1) is computed for two neighboring
nodes that are folded onto one node while the second case is
for neighboring nodes that are folded onto different nodes.
Thus, for neighboring nodes in basic architecture denoted with
i and i+1, 0≤i≤La-2 (Fig. 2), we should differ two groups of
equations. First is whenever i is equal to N-1, 2N-1, … , La-N-1
and the second is otherwise. In the first case, folded equation
(1) can be computed as follows:
3 Df(i→i+1)=N⋅1-0+0-1=N-1, i= N-1, 2N-1, … , La-N-1. (3)

Folding equations for all other nodes are computed as:
4 Df(i→i+1)=N⋅1-0+(N-1)-0=2N-1, i≠ N-1, 2N-1, … , La-N-1. (4)

Folding equation explains how many clock cycles the result
should be stored before the next using. In order to save
required number of latches, the following analysis has to be
done.

If operations i and i+1, from the source architecture, are
folded to the same node j in the folded architecture (0≤j≤k-1),
data produced by operation i have to be stored for N-1 clock
cycles (Eq. 3) before they are consumed by operation i+1 in
the folded architecture. If operations i and i+1 from the source
architecture are folded onto neighbor nodes, j and j+1 in
folded architecture, data produced by operation i have to be
stored for 2N-1 clock cycles before they are used (Eq. 4).
According to (Eq. 3) and (Eq. 4), folded architecture contains
max(N-1,2N-1)=2N-1 latches between nodes j and j+1 that
will be used for data buffering. Data from the latch N-1,
counted left to right from node j, have to be recycled again to
the node j (Eq. 4).

As the previous analysis is concerned with storing of sum
bits in the folded architecture, we have to provide the
corresponding analysis for the storing of carry bits.

In the basic architecture, carry bits within every PE are
recycled in the same node. Thus, only one folding equation
has to be computed for all carry data paths:
5 Df(i→i)=N⋅1-0+0-1=N-1, i= 0, 1, … , La-1 (5)

Equation (5) gives the number of latches for carry bits
storage in the carry-recycling data path of the folded
architecture.

Analysis given in this section is done in general, so the final
architecture is synthesized as parameterized family of Folded
Bit-Serial Multipliers - FBSM (Fig. 3).

For the design of specific folded architecture the values for
k and N can be choused in the parameterized family of FBSM .
It provides the finding of optimal area-time solution for the
given requirements.

Next section gives the description of data flow within the
folded architecture.

V. FUNCTIONAL DESCRIPTION

The family of Folded Bit-Serial Multipliers (FBSM) is
given in Fig. 3. FBSM consists of k PEs that are denoted with
dashed boxes and marked as k-1, k-2, …, 0. Each of PEs is
connected to its right neighbor via buffer that has (2N-1)
delays. Data from (N-1)-st letch are feedback to source PE.
Carry output from each PE is recycled to the carry input of the
same PE via buffer with N-1 delays. Data output, recycled
from PE, is switched again to the same PE only within time
instances {1,2,…,N-1}. Within time instance {0} each PE
collects data from its left neighbor’s buffer.

Before the start of multiplication, operand a has to be
available at parallel input aLa-1 , aLa-2 ,…, a0 as it is shown in
Fig. 3. The second operand b is entered into the multiplier in
LSB first manner. In the first clock cycle bit b0 of operand b is
processed. It is multiplied with k bits of operand a – aLa-N, aLa-

2N,…, a0, using AND operation simultaneously and the result
is moved to the right - into buffers . In the second clock cycle
bit b0 is processed again. It is bit-wise AND, multiplying b0
with next k bits of operand a - aLa-N+1 , aLa-2N+1 ,…, a1. The
result is moved to the right into the buffers again. The result
produced in the first clock cycle will be recycled to the input
of the source PE passing through buffer of N-1 delays.
Intermediate result produced in the same clock cycle will be
added to the intermediate result computed in (2N-1)-st clock
cycle and shifted for one position right after the passing
thought 2N-1 latches.

The corresponding data flow for FBSM with k=2,
N=2,La=4,Lb=4, which is shown in Fig. 4, is given in Table I.
Column Dn.m of Table I contains the data, stored in m - th
letch (from left to right) starting from PE n, for first 6 clock

cycles. Clock cycles in which the result bit is present on
output (D0.3) are denoted with (*) – 2, 4 and 6.

1 0

b , b , b , b3 2 1 0

'0'

a a{1} {1}

{0} {0}
{0} {0}

{1} {1}

p

a a
3 1

2 0

D D

D D

2D 2D

 Fig 4. FBSM architecture (k=2, N=2,La=4,Lb=4)

TABLE I.
FBSM DATA FLOW FOR k=2, N=2,La=3,Lb=3

PE1 PE0 time

inst. D1.1 D1.2 D1.3 D0.1 D0.2 D0.3

0 {0} a2b0 0 0 a0b0 0 0

1 {1} a3b0 a2b0 0 a1b0 a0b0 0

2 {0}*
a2b1+
a3b0

a3b0 a2b0
a0b1+
a1b0

a1b0 a0b0

3 {1} a3b1
a2b1+
a3b a3b0

a1b1+
a2b0

a0b1+
a1b0

a1b0

4 {0}*
a2b2+
a3b1

a2b2+
a3b

a2b1+
a3b0

a0b2+
a1b1+
a2b0

a1b1+
a2b0

a0b1+
a1b0

5 {1} a3b2
a2b2+
a3b

a2b2+
a3b1

a1b2+
a2b1+
a3b0

a0b2+
a1b1+
a2b0

a1b1+
a2b0

6 {0}*
a2b3+
a3b2

a3b2
a2b2+
a3b1

a0b3+
a1b2+
a2b1+
a3b0

a1b2+
a2b1+
a3b0

a0b2+
a1b1+
a2b0

FBSM’s initial latency is 2N-1 clock cycles. One bit of the

final products is produced every N clock cycles.
The throughput of synthesized architecture is reduced for N

times. For the sake of illustration of operating speed as well as
chip occupation, comparative results of FPGA implementation
for basic and folded architecture, are presented in the next
section.

Fig 3. Family of Folded Bit-Serial Multipliers

k-1 0k-2

b , b , b , ... , bL -1 L -2 L -3 0

'0'

a a a{N-1} {N-1}{N-1}
{N-2} {N-2}{N-2}

{0} {0}{0}
{0}

{1,2,...,N-1} {1,2,...,N-1}{1,2,...,N-1}

{0}{0}
p

a a a

a a a

L -1 L -N-1 N-1
L -2 L -N-2 N-2

L -N L -2N 0

a a

a a

a a

b b b

(N-1)D(N-1)D(N-1)D

(N-1)D (N-1)D(N-1)D

NDNDND

VI. IMPLEMENTATION

Each PE of basic multiplier requires two associated latches
(Fig. 2), and for the folded architecture, each PE requires (N-
1)+(N-1)+N=3N-2 associated latches. It the folded
architecture 3N-2 latches per PE are grouped in three
separated entities that form a simple shift register.

The Xilinx’s Spartan-II function generators are
implemented as 4-input look-up tables (LUTs). In addition to
operating as a function generator, each LUT can provide a
16 x 1-bit synchronous RAM. The Spartan-II LUT can also
provide a 16-bit shift register. Basic building block of the
Spartan-II CLB is the logic cell (LC). Each Spartan-II CLB
contains four LCs, organized in two similar slices. Thus,
Spartan-II can provide two 16-bit shift-registers (32-bit shift
register) per slice for implementation of proposed folded
architecture. The equation that gives the number of required
slices for folded architecture per PE, keeping in mind that
number of available latches in Spartan II per slice is 32, is:

 



 −⋅=

32
23 NPE (5)

Concerning routing of wires between PEs it is hardly
possible to force implementation of more than one PE of basic
architecture per slice. However, involving optimization efforts
as well as using of mentioned shifting property of Spartan II,
one PE of folded architecture can be fneted at one slice of
Spartan II. It is possible for folding factor less then 11 (Eq. 5).
Chip occupation for both basic BSM and folded BSM
according to (Eq. 5) are given in Table II.

TABLE II

CHIP OCCUPATION AND CLOCK PERIODS - SPARTAN II XC2S2000-5PQ208

Basic BSM Folded BSM
Op.

length No. of
PEs

Slices
 used

Clock
period

[ns]

Foldin
g

factor

No. of
PEs

Slices
 used

Clock
period

[ns]
8 8 3.957 1 8 8 4.088

2 4 4 4.10588
4 2 2 3.803

16 16 4.706 2 8 8 4.898
4 4 4 4.785116
8 2 2 4.502

32 32 4.580 4 8 8 4.590
8 4 4 4.214332

16 2 4 4.367
64 64 6.682 8 8 8 7.211

16 4 8 7.20264
32 2 6 7.003

128 128 8.129 16 8 16 8.056
32 4 12 7.855128
64 2 12 7.841

Table II also contains clock periods for both architectures.
Clock periods are obtained by implementing these
architectures on Xilinx’s Spartan II xc2s2000-5pq208.

VII. DISCUSSION AND CONCLUSIONS

The synthesis of family of folded bit-serial multipliers is
presented in this paper. For the design of specific folded
architecture the number of processing elements and folding
factor can be choused in the parameterized family of FBSM. It
provides the finding of optimal area-time solution for the
given requirements.

Saprtan II “shift register” property was used to relax the
constraints caused by relatively large number of lathes in
folded architecture.

Generated architecture has kept almost all desirable features
of source SPSM architecture. The hardware reduction of
active arithmetic elements for the factor N is done at the cost
of execution time.

VIII. REFERENCES

[1] J. Valls, M. Martinez-Peiro, T. Sansaloni, and E. Boemo, "Fast
FPGA-Based Pipelined Digit-Serial/Parallel Multipliers" , Proc.
1999 IEEE ISCAS (Int. Symp. on Circuits and Systems),
Volumen I, pp.482-485, Orlando, Florida, May 1999.

[2] M. Schimmler, B. Schmidt, H.W. Lang, S. Heithecker, “An
Area-Efficient Bit-Serial Integer Multiplier”, H.R. Arabnia, L.T.
Yang (Eds.), Proceedings of the International Conference on
VLSI, Las Vegas, Nevada, USA, CSREA Press, pp. 131-137
(2003)

[3] P. Denyer and D. Renshaw, ”VLSI SIGNAL PROCESSING: A
Bit-Serial Approach”, Addison-Wesley, 1985.

[4] K.K. Parhi, “VLSI Digital Signal Processing Systems (Design
and Implementation)”, John Wiley & Sons, In., New York, 2000.

[5] T. C. Denk, K. K. Parhi, “Synthesis of Folded Pipelined
Architectures for Multirate DSP Algorithms”, IEEE Transaction
on Very Large Scale Integration (VLSI) Systems, Vol.6, No. 4,
Dec. 1998, pp. 595-607.

