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1Abstract – The synthesis of new family of folded bit-serial 
multipliers for integer multiplication  is presented in this 
paper. Folding technique is applied to serial-parallel serial 
multiplier architecture. The resulting architecture can operate  
with operands of arbitrary length. In order to illustrate 
functionality of proposed architecture the preliminary results of 
FPGA implementation are given. 
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I. INTRODUCTION 

In several cases, it is senseless to use a bit-parallel circuit: it 
has an important cost in area and runs faster than the 
throughput required by the application. In these cases, the bit-
serial approach became an important alternative for efficient 
implementation of custom Digital Signal Processing (DSP) 
circuits [1].  

Modern VLSI technology allows integrating massive parallel 
systems on a single chip. The area limitations for the 
processors of such systems require small but efficient 
computational units. Particularly, in public-key cryptography 
special features  are required for multiplier units. In RSA 
encryption and decryption, large integers (typically 1024 bits  
or more) must be multiplied, and in elliptic curve 
cryptosystems, a multiplication in finite fields is required. In 
contrast to cryptography, operands in signal processing 
applications are usually short, e.g. 8-bit pixels [2]. A 
parameterized family of folded bit-serial multipliers that covers 
all these applications is presented in this paper. 

As a source architecture, which provides a starting point in 
the synthesis procedure, standard bit-serial multiplier is  
chosen. The multiplier is characterized with serial input; 
parallel bit-level processing, and serial output - SPS multiplier 
[3]. 

This paper is organized as follows: Section 2 gives a brief 
review of folding technique. Basic SPS multiplier architecture 
is described in Section 3. In Section 4, the synthesis 
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procedure of folded bit-serial multipliers family is given. 
Section 5 covers the functional description of folded 
architecture while in Section 6 we give preliminary results of 
FPGA implementation. Section 7 is concerned with discussion 
and conclusions.  

II. FOLDING TECHNIQUE 

The folding technique is introduced by K.K. Parhi and 
described in [4, 5]. With aim to clarify the technique of 
applying of folding technique, we give a brief review of 
folding transformation. 

The synthesis of folded data path is explained in Fig. 1 a) 
and Fig. 1 b). Fig. 1 a) shows an edge VU → with )(w e  
delays, while Fig. 1 b) depicts the corresponding folded data 
path. The data begin at the functional unit uH that has 

uP pipelining stages, pass through 

1   ( ) ( ) uvPeNwVUD uF −+−=→  (1) 

delays, and are switched into the functional unit vH at the 

time instances vNl + , where N is the number of operations 
folded to a single functional unit (folding factor), 
while u andv are the folding orders of nodes U and V that 
satisfy 0,1 ≥≥− vuN . 

 

 Fig. 1. The synthesis of folded data path: (a) An edge 
VU → with ( )ew delays;  (b) The corresponding folded data path 

A folding set, S , is defined as an ordered set of operations, 
which contains N entries, executed by the same functional 
unit. For a folded system to be realizable ( ) 0≥→ VUDF  
must hold for all of the edges in the DFG. Once valid folding 
sets have been assigned, if this property in not satisfied, 
retiming technique has to be used. 

Since the folding technique will be applied to SPS 
multiplier, the short description of SPSM architecture is given 
in the next section. 

III. THE BASIC MULTIPLIER 

The Data Flow Graph (DFG) that represents the SPS 
multiplier is given in Fig. 2. Processing elements (PEs) are 
denoted with dashed lines. SPS multiplier consists of aLa PEs, 



while La represents the length of operand a. Each PE is 
marked with i (0≤i≤La-1) in bottom-left corner and consists 
one AND gate and one full adder (Fig. 2). Before the start of 
multiplication, operand (a) has to be available at parallel input 
aLa-1 , aLa-2 ,…, a0, with the LSB at left first position, bearing in 
mind that the length of operand a is La. Second operand b, 
which has a length Lb, is entered into the multiplier in LSB-
first manner. In each clock cycle i one bit bi of operand b is 
processed. It is multiplied by a using AND operation 
simultaneously in all PEs . The result is added to the current 
sum, and new intermediate result is  computed. 
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 Fig. 2. DFG representation of Serial-Parallel Serial Multiplier  

Since the carry save arithmetic is implemented intermediate 
result is available in two binary words: s-word and c-word.  

The next bit bi+1 of b is processed in the next clock cycle. 
Since the intermediate result has to be multiplied by 2, the 
intermediate is  shifted for one position to the right before the 
new product is added. Shift operation is preformed by 
propagation of the sum bits to the next right neighbor. Carry 
bit loops provide the processing of carries in the same 
processing element. The shift operation gives one resulting bit 
at the output of the rightmost full adder. Thus the i-th bit of 
the final product is obtained. 

Introduced architecture is highly regular and contains 
broadcast line. It is a very suitable architecture for application 
of folding technique.  

IV.  SYNTHESIS OF FOLDED ARCHITECTURE 

In order to provide the reducing of chip area and to enable 
the changing of operand’s length in fixed folded multiplier 
architecture we propose a new mapping of operations onto the 
DFG nodes (processing elements). Let us note that N will 
stand for folding factor while k  for the number of processing 
elements in the folded multiplier. 

The multiplier described in the previous section multiplies 
two unsigned integers. With aim to keep the functionality of 
architecture and to involve features that folding technique 
brings, we start with application of folding technique, in 
general form, with assigning of folding sets on the basic 
architecture.  

Folded architecture should consist of k  PEs, so the number 
of involved folded sets has to be equal to k . Total number of 

multiplication operations per clock cycle in basic architecture 
is La, so the folding factor can be computed as: 
2    N = La/k. (2) 

The assignment of folding sets on DFG from Fig 2 is done 
according to following rules:  

1. First N operations starting from the leftmost PE 
belong to folding set Sk-1; 

2. Operation denoted with La-1 in Fig. 2 is the first 
operation in the folding set Sk-1 (Sk-1|N-1);  

3. Operation denoted with La-2 is the second operation 
in the folding set Sk-1 (Sk-1|N-2); 

4. N-th operation, counted from the left, is the last 
operation in folding set Sk-1 (Sk-1|0); 

5. (N+1)-st operation belongs to folding set Sk-2  

(Sk-2|N-1); 
6. The rightmost operation belongs to folding set S0 

(S0|0). 
As the basic architecture (Fig. 2) is highly regular, for 

results of folding Eq. (1) we differ two cases. The first case 
occurs when folding Eq. (1) is computed for two neighboring 
nodes that are folded onto one node while the second case is 
for neighboring nodes that are folded onto different nodes. 
Thus, for neighboring nodes in basic architecture denoted with 
i and i+1, 0≤i≤La-2 (Fig. 2), we should differ two groups of 
equations. First is whenever i is equal to N-1, 2N-1, … , La-N-1 
and the second is otherwise. In the first case, folded equation 
(1) can be computed as follows: 
3  Df(i→i+1)=N⋅1-0+0-1=N-1, i= N-1, 2N-1, … , La-N-1. (3) 

Folding equations for all other nodes are computed as: 
4  Df(i→i+1)=N⋅1-0+(N-1)-0=2N-1, i≠ N-1, 2N-1, … , La-N-1. (4) 

Folding equation explains how many clock cycles the result 
should be stored before the next using. In order to save 
required number of latches, the following analysis has  to be 
done. 

If operations i and i+1, from the source architecture, are 
folded to the same node j in the folded architecture (0≤j≤k-1), 
data produced by operation i have to be stored for N-1 clock 
cycles (Eq. 3) before they are consumed by operation i+1 in 
the folded architecture. If operations i and i+1 from the source 
architecture are folded onto neighbor nodes, j and j+1 in 
folded architecture, data produced by operation i have to be 
stored for 2N-1 clock cycles before they are used (Eq. 4). 
According to (Eq. 3) and (Eq. 4), folded architecture contains 
max(N-1,2N-1)=2N-1 latches between nodes j and j+1 that 
will be used for data buffering. Data from the latch N-1, 
counted left to right from node j, have to be recycled again to 
the node j (Eq. 4). 

As the previous analysis is concerned with storing of sum 
bits in the folded architecture, we have to provide the 
corresponding analysis for the storing of carry bits. 

In the basic architecture, carry bits within every PE are 
recycled in the same node. Thus, only one folding equation 
has to be computed for all carry data paths: 
5  Df(i→i)=N⋅1-0+0-1=N-1, i= 0, 1, … , La-1 (5) 



Equation (5) gives the number of latches for carry bits 
storage in the carry-recycling data path of the folded 
architecture. 

Analysis given in this section is done in general, so the final 
architecture is synthesized as parameterized family of Folded 
Bit-Serial Multipliers - FBSM (Fig. 3). 

For the design of specific folded architecture the values for 
k and N can be choused in the parameterized family of FBSM . 
It provides the finding of optimal area-time solution for the 
given requirements. 

Next section gives the description of data flow within the 
folded architecture. 

V. FUNCTIONAL DESCRIPTION 

The family of Folded Bit-Serial Multipliers (FBSM) is 
given in Fig. 3. FBSM consists of k PEs that are denoted with 
dashed boxes and marked as k-1, k-2, …, 0. Each of PEs is 
connected to its right neighbor via buffer that has (2N-1) 
delays. Data from (N-1)-st letch are feedback to source PE. 
Carry output from each PE is recycled to the carry input of the 
same PE via buffer with N-1 delays. Data output, recycled 
from PE, is switched again to the same PE only within time 
instances {1,2,…,N-1}. Within time instance {0} each PE 
collects data from its left neighbor’s buffer. 

Before the start  of multiplication, operand a has to be 
available at parallel input aLa-1 , aLa-2 ,…, a0 as it is shown in 
Fig. 3. The second operand b is entered into the multiplier in 
LSB first manner. In the first clock cycle  bit b0 of operand b is 
processed. It is multiplied with k bits of operand a – aLa-N, aLa-

2N,…, a0, using AND operation simultaneously and the result 
is moved to the right - into buffers . In the second clock cycle 
bit b0 is processed again. It is bit-wise AND, multiplying b0 
with next k  bits of operand a - aLa-N+1 , aLa-2N+1 ,…, a1. The 
result is moved to the right into the buffers again. The result 
produced in the first clock cycle will be recycled to the input 
of the source PE passing through buffer of N-1 delays. 
Intermediate result produced in the same clock cycle will be 
added to the intermediate result computed in (2N-1)-st clock 
cycle and shifted for one position right after the passing 
thought 2N-1 latches. 

The corresponding data flow for FBSM with k=2, 
N=2,La=4,Lb=4, which is shown in Fig. 4, is given in Table I. 
Column Dn.m of Table I contains the data, stored in m - th 
letch (from left to right) starting from PE n, for first 6 clock 

cycles. Clock cycles in which the result bit is present on 
output (D0.3) are denoted with (*) – 2, 4 and 6. 
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 Fig 4. FBSM architecture (k=2, N=2,La=4,Lb=4) 

TABLE I. 
FBSM  DATA FLOW FOR k=2, N=2,La=3,Lb=3 

 
PE1 PE0 time 

inst. D1.1 D1.2 D1.3 D0.1 D0.2 D0.3 

0 {0} a2b0 0 0 a0b0 0 0 

1 {1} a3b0 a2b0 0 a1b0 a0b0 0 

2 {0}* 
a2b1+ 
a3b0 

a3b0 a2b0 
a0b1+ 
a1b0 

a1b0 a0b0 

3 {1} a3b1 
a2b1+ 
a3b a3b0 

a1b1+ 
a2b0 

a0b1+ 
a1b0 

a1b0 

4 {0}* 
a2b2+ 
a3b1 

a2b2+ 
a3b 

a2b1+ 
a3b0 

a0b2+ 
a1b1+ 
a2b0 

a1b1+ 
a2b0 

a0b1+ 
a1b0 

5 {1} a3b2 
a2b2+ 
a3b 

a2b2+ 
a3b1 

a1b2+ 
a2b1+ 
a3b0 

a0b2+ 
a1b1+ 
a2b0 

a1b1+ 
a2b0 

6 {0}* 
a2b3+ 
a3b2 

a3b2 
a2b2+ 
a3b1 

a0b3+ 
a1b2+ 
a2b1+ 
a3b0 

a1b2+ 
a2b1+ 
a3b0 

a0b2+ 
a1b1+ 
a2b0 

 
FBSM’s initial latency is 2N-1 clock cycles. One bit of the 

final products is produced every N clock cycles. 
The throughput of synthesized architecture is reduced for N 

times. For the sake of illustration of operating speed as well as 
chip occupation, comparative results of FPGA implementation 
for basic and folded architecture, are presented in the next 
section. 

Fig 3. Family of Folded Bit-Serial Multipliers 
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VI. IMPLEMENTATION 

Each PE of basic multiplier requires two associated latches 
(Fig. 2), and for the folded architecture, each PE requires (N-
1)+(N-1)+N=3N-2 associated latches. It the folded 
architecture 3N-2 latches per PE are grouped in three 
separated entities that form a simple shift register.  

The Xilinx’s Spartan-II function generators are 
implemented as 4-input look-up tables (LUTs). In addition to 
operating as a function generator, each LUT can provide a  
16 x 1-bit synchronous RAM. The Spartan-II LUT can also 
provide a 16-bit shift register. Basic building block of the 
Spartan-II CLB is the logic cell (LC). Each Spartan-II CLB 
contains four LCs, organized in two similar slices. Thus, 
Spartan-II can provide two 16-bit shift-registers (32-bit shift 
register) per slice for implementation of proposed folded 
architecture. The equation that gives the number of required 
slices for folded architecture per PE, keeping in mind that 
number of available latches in Spartan II per slice is 32, is: 

 



 −⋅=

32
23 NPE  (5) 

Concerning routing of wires between PEs it is hardly 
possible to force implementation of more than one PE of basic 
architecture per slice. However, involving optimization efforts 
as well as using of mentioned shifting property of Spartan II, 
one PE of folded architecture can be fneted at one slice of 
Spartan II. It is possible for folding factor less then 11 (Eq. 5). 
Chip occupation for both basic BSM and folded BSM 
according to (Eq. 5) are given in Table II. 

 
TABLE II 

CHIP OCCUPATION AND CLOCK PERIODS - SPARTAN II XC2S2000-5PQ208 
 

Basic BSM Folded BSM 
Op. 

length No. of 
PEs 

Slices  
 used 

Clock 
period 

[ns] 

Foldin
g 

factor 

No. of  
PEs 

Slices  
 used 

Clock 
period 

[ns] 
8 8 3.957 1 8 8 4.088

2 4 4 4.10588
4 2 2 3.803

16 16 4.706 2 8 8 4.898
4 4 4 4.785116
8 2 2 4.502

32 32 4.580 4 8 8 4.590
8 4 4 4.214332

16 2 4 4.367
64 64 6.682 8 8 8 7.211

16 4 8 7.20264
32 2 6 7.003

128 128 8.129 16 8 16 8.056
32 4 12 7.855128
64 2 12 7.841

Table II also contains clock periods for both architectures. 
Clock periods are obtained by implementing these 
architectures on Xilinx’s Spartan II xc2s2000-5pq208. 

VII. DISCUSSION AND CONCLUSIONS 

The synthesis of family of folded bit-serial multipliers is 
presented in this paper. For the design of specific folded 
architecture the number of processing elements and folding 
factor can be choused in the parameterized family of FBSM. It 
provides the finding of optimal area-time solution for the 
given requirements.  

Saprtan II “shift register” property was used to relax the 
constraints caused by relatively large number of lathes in 
folded architecture. 

Generated architecture has kept almost all desirable features 
of source SPSM architecture. The hardware reduction of 
active arithmetic elements for the factor N is done at the cost 
of execution time.  
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