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Abstract

The synthesis of configurable bit-plane processing array for FIR filtering is described in this paper. Possibilities for con-
figuration are explored and encompassed by application of folding technique. The proposed folded architecture supports
on-the-fly configuration of number of taps and coefficient length. This is achieved by dynamic operations mapping on the
different hardware units in array structure. Dynamic operations mapping, involved in application of folding technique,
allows recognition of user defined parameters, such as number of coefficients and coefficient length on implemented array
size. The architecture provides flexible computations and offers the possibility of increasing the folded system throughput,
by reducing the number of operations performed on a single functional unit, at cost of decreasing the coefficient number or
length. Effects of folding technique application to architecture configuration capabilities are presented. The configurable
folded FIR filter synthesis process is presented in detail. The obtained folded system architecture is described by block dia-
gram, DFG, functional block diagram and the data flow diagram. The method of operation and operations mapping on
the processing units are described. The algorithms for data reordering are given. With the aim to illustrate the function-
ality, configuration capabilities, and ‘““‘trade-offs” relating to occupation of the chip resources and achieved throughputs of
synthesized folded architecture, we present results of FPGA prototyping. The proposed configurable folded array is used
for H.264/AVC deblocking filter implementation with extremely low-gate count that is achieved at the cost of time, but the
design meets the requirement for real-time deblocking in mobile embedded computing platforms.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Mobile devices technology is changing rapidly.
There is an increasing number of wireless-communi-
cations standards, code-division multiple access,
and emerging third-generation technologies. How-
ever, as wireless technologies mature, service pro-
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viders differentiate themselves by offering new
features, such as multimedia capabilities [1]. Addi-
tionally, video coding applications, such as H.264/
MPEG-4 Advanced Video Coding, adopt filter
called deblocking filter in order to eliminate block-
ing artifacts and to achieve better coding efficiency
[2-4]. The deblocking filter is much more complex
than common low-pass FIR filters. The concept
of deblocking is first to decide what kind of FIR fil-
ter should be involved considering the blurring
effects on the currently processed image edges.
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Then, different types of filters, relating to number of
taps, are selected [2-4]. The additional circuitry
adds cost, occupies more space, increases power
usage in mobile devices, and increases product-
design time. This problem can be solved by using
configurable architectures. With this approach,
computation can be changed on the fly, letting a sin-
gle architecture perform different computations
[1,5]. In configurable FIR filtering, circuitry can be
changed on the fly, as software instructions com-
mand circuitry control logic to alternate the compu-
tation. Reconfiguration can occur within only a few
clock cycles [1].

Many different FIR filtering structures exist.
Most of them are based on systolic methods [6—
10], and provide some trade-off between complexity
and throughput. For dedicated applications, the
design choice then becomes the minimal complexity
structure that can achieve the required throughput
rate. Therefore, in order to establish optimal area—
time trade-off, a careful choice of circuit design style
is necessary. In synthesizing DSP architectures, it is
important to minimize the silicon area of the inte-
grated circuits. That is achieved by reducing the
number of functional units (such as multipliers
and adders), registers, multiplexers, and intercon-
nection wires. The folding transformation is used
to systematically determine the control circuits in
DSP architectures where multiple algorithm opera-
tions are time multiplexed to a single functional
unit. By executing multiple algorithm operations
on a single functional unit, the number of functional
units in the implementation is reduced, resulting in
an integrated circuit with low-silicon area [11].

The goal of this paper is the synthesis of folded
FIR filter that is capable of on-the-fly configuration
of number of taps and coefficient length in fixed
array structure. As a starting architecture for the
synthesis of the folded bit-plane FIR filter architec-
ture with changeable folding sets, well-known bit-
plane architecture (BPA) [5,12] is used [13-15].
The crucial novelty is that folding technique is used
to obtain runtime control over functional units of
configurable architecture that will enable on-the-
fly change of the set of operations performed on a
single functional unit. In other words, the different
operations can be mapped on the different hardware
units in a fixed array structure. The proposed archi-
tecture should enable FIR filtering on toroid bit-
plane processing array, where the number of taps
and coefficient length could be configured. The
derived architecture should serve as a platform for

implementation of the deblocking filter. It provides
flexible computations and offers the possibility of
increasing folded system throughput, by reducing
the number of operations performed on single func-
tional unit, when the system performs the computa-
tion with a reduced number of taps or coefficient
length.

This paper deals with the effects of operation
assignment to folded architecture configuration
capabilities. Data flow of folded FIR filter with
changeable folding factor will be presented. The syn-
thesis process will be presented in detail, as well as
the solution for the retiming of source BPA DFG
that enables the synthesis of configurable fixed size
folded array. The obtained architecture, based on
new folding set assignment, will be described with
a block diagram, DFG, functional block diagram
and the data flow diagram, as well as the method
of operation and operations mapping on the pro-
cessing units. The reordering of coefficient bits,
inherited from operations mapping, will be extracted
from the array and implemented by proposed reor-
dering algorithm in separate module, keeping input
and output data order unchanged, as well as the
array regularity. The algorithm for coefficient bit
reordering will be presented, as well as a hardware
implementation for the reordering unit. In order
to illustrate the functionality and performances of
synthesized folded architecture, we give implementa-
tion results of folded FIR filter architecture with
changeable number of coefficients and coefficient
length. The design ““trade-offs” relating to the chip
resources occupation and achieved throughputs are
presented. The configuration abilities are demon-
strated on one representative fixed size folded array.
The proposed architecture is used for H.264/AVC
deblocking filter design in embedded mobile com-
puting devices. Deblocking method with 5 different
FIR filter modes [3] is successfully implemented by
the proposed architecture.

The paper is organized as follows. Section 2 gives
background for the application of folding tech-
nique; Section 3 is devoted to bit-plane architecture
as a basis for synthesis process; Section 4 presents
transposed folded bit-plan FIR filter with folded
bit multiplications and changeable folding factor;
Section 5 is the main section and contains analysis
of dependencies between configuration abilities
and folding set assignment, using bit-plane FIR fil-
ter with folded bit multiplications, and synthesis of
folded architecture with changeable number of coef-
ficients, as well as the description of new assignment
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of folding sets and the solution for the retiming pro-
cedure. Functional description of the synthesized
architecture is presented, too; Section 6 is devoted
to the FPGA implementation of the folded FIR fil-
ter architecture; Section 7 stands for H.264/AVC
deblocking filter implementation based on the pro-
posed configurable folded architecture, while in Sec-
tion 8 concluding remarks are given.

2. Folding technique

With aim to clarify the application of folding
technique to the BPA we give a brief review of fold-
ing transformation.

Folding or time-multiplexing is a technique for
efficient resource sharing for area-constrained syn-
thesis from a data-flow graph (DFG). Folded archi-
tecture is an architecture that executes multiple
algorithm operations on single functional unit.
The algorithm operations are executed on the
reduced number of functional units at the cost of
time. Thus, the folding enables a fine tuning of
area—time (AT) properties by reducing the number
of functional units in applications where throughput
can be traded-off for silicon area.

Folding technique is a technique, introduced by
Parhi [11], which gives the answer whether the archi-
tecture is foldable or not, and allows calculation of
folded data path delays and timings, in cases when
folding is possible. The folding technique can be
well exploited for systematic achieving of through-
put requirements on restricted silicon area. The
basic terms of folding technique are folding set,
folding factor and folding order. Folding set (.S) is
defined as an ordered set of operations, which con-
tains N operations, time-multiplexed on the same
functional unit (FU). The number of operations
executed by same FU is called a folding factor
(N). Folding order (v) of operation H, is a time
instance in which FU of the folded system executes
the operation [11].

The synthesis of folded data path is explained in
Fig. la and b (taken from [11]). Fig. la shows

G S NG

b N-l+v

Fig. 1. The synthesis of folded data path. (a) An edge U— V'
with w(e) delays and (b) the corresponding folded data path.

unfolded data path, as an edge U — V with w(e)
delays, while Fig. 1b depicts the corresponding
folded data path. Folding technique states that the
data, which begin at the functional unit H, with
P, pipelining stages, pass through

D/(U—-V)=Nwle)—P,+v—u (1)

delays, and are switched into the functional unit H,
at the time instances N - /+ v, where N is a folding
factor, while u and v are the folding orders of nodes
U and V that satisfy 0 <u, v < N — 1.

For a folded system to be realizable, D/(U —
V) = 0 must hold for all of the edges in the DFG.
Once valid folding sets have been assigned, retiming
can be used to satisfy this property or determine
that the folding sets are not feasible. Using retiming
[11] an edge U — V with w(e) delays can be modi-
fied, in order to satisfy the condition Dy(U — V) >
0, by changing the number of delays as follows:

wi(e) = w(e) +r(V) —r(U), 2)

where w,(e) is the number of delays in edge U — V'
of retimed DFG while r(X) represents the retiming
value for node X. In other words if the number of
delays of input edge is decreased for value r(X),
the number of delays in all output edges should be
increased for the same value. Let D}(U — V) be a
number of delays in edge U— V in the retimed
DFG. The following condition must be satisfied

D(U—V) =0, ie Nwle)—P,+v—uz=0.

3)

An inequality (3), using Eq. (2) can be rewritten
as follows:

r(U) =r(V) < |Dy(U = V)/NJ, (4)

where | x | is maximal integer less or equal to x. If
the solution for system of inequalities exists the
DFG can be retimed, and folded.

After this short description of folding technique,
let us introduce architecture of bit-plane semi-sys-
tolic FIR filter as a source for synthesis of configu-
rable folded FIR filter array.

3. Bit-plane semi-systolic FIR filter

Output words {y;} of FIR filter are computed as
Vi = CoXi Xt s G Xi kg (5)

where c¢g,cq,...c, 1 are coefficients while {x;} are

input words.
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Computation (5) can be realized in different man-
ners. When high-performances are required systolic
arrays are frequently used. Semi-systolic array share
with systolic arrays desirable simplicity and regular-
ity properties in addition to their pipelining and
multiprocessing schemes of operation. The only dif-
ference is that the broadcasting of data to many PEs
in one time step is allowed in semi-systolic arrays,
while systolic arrays are restricted to temporal local-
ity of communication. Also, the existence of some
additional connections can be allowed for semi-sys-
tolic architectures [5,7].

The bit-plane architecture (BPA) is semi-systolic
architecture with bit-plane operations that provides
regular connections with extensive pipelining and
high-computational throughput. The BPA, due to
regularity, is taken as a basis for synthesis of folded
semi-systolic FIR filter architecture with changeable
number of coefficients and coefficient length. In
order to explain the BPA following notation is
adopted:

m coefficient word length,

kc number of coefficients (co, ¢y, .. .,cr. — 1),
n input word length, A

c bit of coefficient ¢; (with weight 2),
=m0, where ¢! ... ¢! are the bits of

coefficient ¢ w1th welghts 2 21 L2 respec-
tively, ¢/ = ¢} ¢, ,...c), where c{),cl, .y Ch_y, are
the bits with weight 2’ of coefficients cg, ¢y, ...,k _ 1,
respectively.

The transfer function for the BPA is obtained
from (5). Splitting multiplications in respect to coef-
ficient bits, BPA transfer function for kc =3 and
m = 4, becomes

G(z) =z (6823279 + Zfl) (6?23279 + Zfl) (6323279 + Zfl)
(5322276 + zfl) (0%22276 + zfl) (0322276 + zfl)
(c(1)2lz_3 + Z_I> (0%212_3 + Z_I) (0;212_3 + Z_I)
(02’ +271) (12 +271) (52°). (6)

The splitted parts of the multiplications become
input word times 1 — b coefficient multiplications,

the partial products. It enables fine-grained pipelin-
ing. These are just logical AND function between

{xi 0 -
BIT- BIT- BIT-
PLANE PLANE PLANE i
ke ke 4 |

i i i

CO cl Cm—l

Fig. 2. Architecture of bit-plane FIR filter.

the input word and coefficient bits. In the first bit-
plane the least significant partial products (¢’x) of
all coefficients are computed and accumulated
(Fig. 2, taken from [12]).

The output of the first bit-plane is shifted by one
weight and then the second lowest significant partial
products are processed in the second bit-plane and
so on [12].

The corresponding DFG for kc =3 and m =4 is
given in Fig. 3, and functional block diagram of bit-
plane architecture (kc = 3, m =4, n = 5) is shown in
Fig. 4 (taken from [12]). The functional block dia-
gram from Fig. 4 is designed to operate with input
words {x} in 2’s complement, and with unsigned
coefficients [12]. Simultaneous processing of all
LSBs, at the beginning of computation, enables
the truncation of one LSB of the intermediate out-
put signal after each bit-plane without any loss of
accuracy in more significant weights. Number of
coefficients (kc), coefficient length (m) and input
word length (n) are design parameters of the archi-
tecture. Architecture consists of kc-m rows and
m + n + logsr(kc) columns of basic cells (Fig. 4).

Since architecture of folded system directly
depends on method of operations mapping onto
the nodes in folded system (folding set assignment),
only specific folding set assignment will lead to the
solution that enables configuration of number of
coefficients. There is no a formal method to find
folded set assignment that will lead to an architec-
ture that has preferred feature.

Approach of designing configurable folded archi-
tecture with changeable number of coefficients, used
in this paper, is to assign folding sets and fold archi-
tecture in general form, find dependencies between
folding sets and folded architecture parameters,

Fig. 3. DFG for the BPA with kc =3 and m =4.
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Fig. 4. The BPA for kc =3 and m =4.

and synthesize control logic that allows configura-
tion of these parameters.

However, different folding set assignments lead
to architectures with different possibilities of config-
uration. Architecture of folded bit-plane FIR filter
presented in [13] enables the configuration of fold-
ing factor, i.e., coefficient length. We choose this
architecture to find dependencies among configura-
tion abilities of folded architecture and folding set
assignment, and to adopt folding set assignment
with aim to allow the synthesis of folded architec-
ture with changeable number of coefficient.

4. Transposed bit-plane FIR filter with folded bit
multiplications

The BPA cannot be transformed into the folded
bit-plane architecture by direct application of fold-
ing technique. It is obvious, from Figs. 3 and 4, that
multiplications of coefficients and input words can-

not be recognized as operations, i.e., nodes in the
DFG, because the algorithm is based on the resort-
ing of partial products. It implies that it is necessary
to apply the folding technique at bit-level. Subse-
quently, the transfer function (6) should be trans-
formed in order to group bits of one coefficient
from all bit-planes (Fig. 5) to a single processing
unit (PU) and avoid delays between operations in
one plane [13,14].

By avoiding delays between operations in one
plane and grouping bits of one coefficient from all
bit-planes, each PU from Fig. 5 can be folded to a
single processing unit (PUg) as it is shown in
Fig. 6. In Fig. 6 the number of folding sets, denoted
as k, is adopted to be equal to number of coefficients
(kc), 1.e., k=kc. In the first PUg the product
(Cke—1 * Xo) 1s computed in m clock cycles and accu-
mulated (Fig. 6). The output of the first PUg is
shifted by one weight and then the second partial
product, c;._» - X1, is processed in the second PUp,
and so on [13].

Bits of one coefficient from all bit-planes can be
grouped to a single processing unit by reordering
the multiplications within BPA transfer function (6).

If we reorder partial products according to z 7,
G(z) is of the form:

kc—1 m—1

G(Z) _ Z*[(mfl)kCJrl] Z chziz—j

=0 =0

kc—1 m—1

= Z_[(m_1>kC+1] Z Z_j ch'zi' (7)
Jj=0 i=0

PU [— PU ..y PU

1 - A |
i i i]
a1 G2 )

Fig. 5. Architecture of transformed bit-plane FIR filter.

;) "
| _
PU, PUL -~ PUL
Z-m Z-m z m {yx }
i i
St k2 )

Fig. 6. Architecture of bit-plane FIR filter with folded bit
multiplications.
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Transformed form of transfer function (6) is
G(Z) _ ZO (cgz—lzm—l + ng—zzm—Z N 0820)
—|—Z_1 (crln—lszl + Crln—22m72 I 0(1)20)
+ 4 Z*(kcfl) (021(:7112"1—1 + C;:,C—Elzn1—2

e 2). (8)

Reordering of partial products in (7) affected the
architecture to start computation using coefficient
ck—1, instead of starting the computation with coef-
ficient ¢q. Thus, direct form of bit-plane FIR filter is
converted to transposed form bit-plane FIR filter.
DFG of transposed bit-plane FIR filter that corre-
sponds to Eq. (8) is shown in Fig. 7. Bit-plane
FIR filter in transposed form is well prepared for
application of folding technique.

Besides the deriving of suitable DFG for folding
important issue is the setting of folding sets. In
respect to folded architecture shown in Fig. 6, the
folding sets are formed as it is shown in Fig. 7.

The folding sets assignment (S;,r) where s is fold-
ing set with timing order r, used for synthesis of
transposed bit-plane FIR filter with folded bit mul-
tiplications and changeable folding factor (Fig. 7), is
done according to the following equations:

s=1lp—1)/m]
_ )
r=(p—1) mod N.

Using folding set assignment (9), as it is shown in
Fig. 7, leads to the architecture with folded bit mul-
tiplications shown in Fig. 6.

The operations that will be folded are denoted
with dashed lines in Fig. 7. One operation from
transposed DFG (TDFG) assumes forming of par-
tial products and the addition performed in one
“row” of basic cells, (where basic cell contains
AND gate and full adder) [13]. There are k folding
sets (k= kc),S0,51,S55,...,Sk_1, and the number
of folding sets is equal to the number of taps. Each

folding set contains m operations, i.e., the folding
factor, N, is equal to the coefficient length, N = m.
Thus, folding equations (1) for determined folded
sets, where Py =0 and U and V are nodes in TDFG
from Fig. 7, denoted with p, where p=1,2,...,m,
m+1,... kc-m, are:

D(1—=2)=m-0-0+1-0=1
D(2—3)=m-0-0+2-1=1

Dim—1—-m)=m-0-04+m—-1)—(m—-2)=1
Dim—m+1)=m-1-04+0—-(m—-1)=1
Dim+1—-m+2)=m-0-0+1-0=1

Df(kc‘i’l’l*lﬂkc'm)
=m-0-0+(m—-1)—(m—-2)=1.

The condition DU — V) > 0 is satisfied for
each pair of connected nodes (U, V), and it proves
that TDFG from Fig. 7 is well prepared for folding.

The DFG of obtained folded architecture (FA)
with k¢ taps is given in Fig. 8. Data flow for trans-
posed bit-plane FIR filter with folded bit multiplica-
tions is shown in Fig. 9.

Folded architecture from Fig. § is derived in the
general form for k¢ taps and coefficient length m.
Proposed application of folding technique allows
the simultaneous bit-serial operation of all taps.

The duration of computation in each tap depends
on coefficient length m. So, changing of duration of
computation cannot change the number of folding
sets (number of coefficients), but it can change the
number of folded operations within folding sets,
i.e., coefficient length (Figs. 6 and 8).

The changeable folding set is the folding set
where the number of folded operations can vary.
The control units that are able to change the num-
ber of operations in folding sets (coefficient length)

Fig. 7. DFG of transposed bit-plane FIR filter.
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Fig. 9. Data flow of transposed bit-plane FIR filter architecture with folded bit multiplications.

are associated to each folding set and consist of
switch with configurable length for coefficients
entering, and switch with configurable switching
time for partial products accumulation (Fig. 8).

Application of folding technique allows user to
configure folding factor onto implemented array
size. Configuration facility of the proposed architec-
ture relates to coefficient length. It provides flexible
computation and offers the possibility of increasing
of folded system throughput at cost of decreasing
the coefficient length according to the folding factor.
Now, the number of coefficients (kc) is assumed to
be the design parameter.

Functional block diagram of transposed bit-
plane FIR filter with folded bit multiplications from
Fig. 8 is shown in Fig. 10. The numbering system
is inherited from the BPA from Fig. 4 (2’s
complement).

Entering of input words is controlled by multi-
plexers in the first row of basic cells, which are dri-
ven by control signal ck1. The high-level of control
signal ckl, shown in Fig. 10, enables new input
word {x} to enter the architecture in every
N -1+ 0th (i.e., m [+ 0th) clock cycle, otherwise
the path is folded and partial results are accumu-

lated (Fig. 8). The operation with different folding
factors is provided by simple changing of control
signal ckl (Fig. 10), which period should be equal
to m periods of the basic clock signal ck0. Each
coefficient bit register with its 1-to-m; demultiplexer
provides rotation within the range 1-to-m;. The
path for m-bit (0 <m < m;) rotation in the coeffi-
cient bit register is closed at mth coefficient bit by
attached demultiplexer. Thus, the m-bit rotation is
provided.

In comparison with the BPA, the array from
Fig. 10 is restricted for the factor N =m, i.e., the
folding factor is equal to the coefficient length.
The proposed transformation of source DFG for
the bit-plane architecture enables the synthesis of
fully pipelined FIR filter architecture with folded
bit multiplications and changeable folding factor,
but does not enable the changing of number of
coefficients.

Gathering of all bits from one coefficient within
one folding set using proposed folding set assign-
ment makes the number of coefficients equal to
the number of folding sets (i.e., PU). The number
of PUs is architecture parameter that cannot be
changed.
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Fig. 10. Functional block diagram of transposed bit-plane FIR filter folded bit multiplications with changeable folding factor.

5. Synthesis of folded architecture with changeable
number of coefficients

Architecture shown in Fig. 8 is able to operate
with different coefficient lengths, but the number
of coeflicients is equal to the number of processing
units that is invariable. In order to enable the
changing of number of coefficients in fixed size
array, the number of coefficients should not be
equal to the number of PUs. If the number of coef-
ficients is not equal to the number of PUs, then
folded architecture has to have input data supply
module, as well as coefficient bits supply module
to feed the architecture with data. Supply modules
manage data flow within the architecture for differ-
ent number of coefficients. Folded bit-plane FIR fil-
ter architecture with changeable number of
coefficients is shown in Fig. 11. Furthermore, folded
architecture with that property has a data path from
output of the last PU to the input of the first. Cyclic
data path makes the number of PUs transparent to
the number filter taps, i.e., allows accumulation of
partial products by encircling data as long as it is
necessary to finish computation of output word.

Existence of cyclic data path within folded archi-
tecture can be achieved only by assigning new fold-
ing set to TDFG from Fig. 7. The folding sets,

;)
[:}‘%TT WORD SUPPLY MODULE? )
‘ 1
PUF PUF -
2! 2!
ey | 1 i

COEFFICIENT BIT SUPPLY MODULEZ"')

Fig. 11. Architecture of folded bit-plane FIR filter with config-
urable number of coefficients.

assigned in the synthesis process of transposed
FIR filter with folded bit multiplications and
changeable folding factor, did not enable the syn-
thesis of FIR filter with changeable number of
coefficients.

5.1. Folding set assignment

In order to obtain an architecture that enables
changing of coefficient number, bit-plane architec-
ture should be folded using new folding set assign-
ment that produces an encircling data path. Also,
the number of folding sets should not be obligatory
equal to the number of coefficients. Expected data
flow, in respect to the architecture from Fig. 11, is
sketched in Fig. 12.
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Fig. 12. Sketch of new data flow with data paths from last folding set (S5) into the first (Sy) for k =3 and m =4.

In order to enable configuration of number of taps
in fixed folded FIR filter array we propose a new map-
ping of operations onto the DFG nodes rather then
changing the topology of the DFG by additional
transformations. The following notation is involved:

mc coefficient length,

kc number of coefficients,

k number of folding sets,

L total number of operations in the DFG,

where one operation assumes forming of
partial product and the addition performed
by one “row” of basic cells (basic cell con-
tains AND gate and full adder),

P position of operation within the DFG
(I<p<i).
(Sy,r) folding set s with timing order r.

New assignment of folding sets is involved with
aim to enable the synthesis of the folded FIR filter
architecture that will support the changing of both
coefficient number and coefficient length. The fold-
ing set assignment, in respect to data path from
Fig. 12, is shown in Fig. 13 and described with:

The crucial novelty is that (10) enables the chang-
ing of operations in folding sets. In other words the
different operations can be mapped onto the differ-
ent hardware units in fixed array structure. Eq.
(10) provide k folding sets where each folding set
contains N operations. For the coefficients, kc,
and the coefficient length, mc, the total number of
operations, L, is

Let us note that the number of folding sets is not
obligatory equal to the number of coefficients.

In order to have an answer to the question
whether the system is foldable or not, we have to
calculate the folding equations (1) and check the
condition D(U — V) = 0.

Folding equations (1) for the DFG from Fig. 13
with folding sets described with (10) are:

D(1-2)=N-0-0+1-0=1

D/(2—3)=N-0-0+2—-1=1

Dik = k+1)=N-0-0+k—(k—1)=1

s=(p-1) modk (10)
r=(p-—1) modN.
X 2 ees = 7 .e 7 v ese ; ees ™= T .o ;
2 o P
) 1 “1 1 ik -1 ik -1
Clmi le;—lx %1 Cﬁ-é oy a9 kel ¢ ELE < % 4
0 ) t P —D P @D D——>—D > &> »
=1 k K+l N N+L | img metl | ik i+ L
— ~ — ~ — ~ —~ ~
(= — 2 — S oo M —
£ - ) = % = S § _% =
\ S Y « 2 g9 5 S S 2
~ | ~ ~ =} =) E 2 —_
fd« e g ~= g g g )
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A

Fig. 13. Transposed DFG with new assignment of folding sets.
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DN —=N+1)=N-0—0+0—(N—1)
=—(N-1)

Df(mcﬂchrl):N'lfO+(mc modk)
—((mc—1) mod k)
=N+1

Din-k—n-k+1)=N-0—-0+(n-k mod k)
—((n-k—=1) modk)=1

D/(L-1—-L)y=N-0-04+N-1)—-(N-2)=1,
(12)
where Py =0 while U and V are nodes of the
TDFG denoted as p=1,2,3,.. ..k, k+1,...,N,
N+1,...mc, mc+1,...nk, n-k+1,...,L—1,
L(1 <n<N).
Folding equations (12) can be given in the follow-
ing form:
Di(p—p+1)
=N-wle)—0+p mod N]—[(p—1) mod N]
—N+1, p mod N =0,
=< N+1,
1, other.

p modmc=01, I1<p<L-1,

(13)

From (12) or (13), it can be seen that the condi-
tion DU — V) = 0 is not satisfied for each Nth
node, i.e., for nodes U and V on positions where
pu mod N = 0. The reason why the folding condi-
tion is not satisfied is that there are delays between
coefficients ¢;and ¢; 1, i=kc — 2,kc — 1,...,0, but
not between the folding sets in DFG (Fig. 13).
Delays causes negative values in folding equations
(12). This is the main reason for retiming of the
DFG from Fig. 13.

5.2. Retiming
Using the system of inequalities (4) and system of

folding equations (13) the following system of
inequalities is obtained

—1, p modN =0,
rip) —r(p+1)<{ L,

0, other.

p modmc=0,1<p<L—-1,

(14)

The constraint graph (Fig. 14) is formed with aim
to provide the solution for inequalities (14). The
constraint graph is directed graph where for each
rp), p=12,...,.L—1, L, from (14) one node is
assigned. Each inequality of type n(U) — (V) <y
is represented by the directed edge from node ¥ to
node U with assigned weight y. An additional node
denoted with L+ 1 is connected with all other
nodes with zero-weighted edges. The sum of weights
on the shortest path, from node L + 1 to the node
that corresponds to r(p), represents the retiming
for r(p).

In order to provide the solution for inequalities
(14), let us highlight important features of con-
straint graph. First feature relates on direction of
edges (excluding edges that connect node L + 1 with
other nodes). The edge is always directed from the
node with higher position to the node with lower
position, and connects only neighboring nodes. Sec-
ond feature concerns edge index. The weight of the
edge that has a destination in node p (Fig. 14) can be
described as follows:

-1, p mod N =0,

wi=<1l, p modmc=0,p=12,....L—1,
0, other.
The number of edges with weight w; = —1, as

well as with weight wi = 1 can be derived using pre-
viously described features.

The number of edges with weight w; = —1, count-
ing down from the node L to node p(1 < p < L) is

Fig. 14. Constraint graph.
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Thus, the general form for retiming for node p,
r(p), can be obtained by adding weights of all edges
from node L to node p. Therefore, the general form
of retiming r(p) for node p is

ol

mc

For particular case
mc =N, ie. kC:k:>r(p)
=0 forallnodesp (p=1,2,...,L), (16)

and subsequently the retiming is not required.

In order to simplify implementation and reduce
chip occupation we force the last PU of folded
architecture to be the only PU that will have output
lines for {y}. We involve the constrain that coeffi-
cient length (mc) is divisible with the number of
folding sets (k), i.e., mc=¢q -k, ¢g=1,2,3,... In that
manner the computation of output words always
ends in last PU. The constrain implies, according
to (11), that mc > N. Bearing in mind that
mc = 1 and N> 1, the lower and upper bounds
for the retiming (15) are

r(1) = V_IJ - VN:J = (ke = 1) = (k= 1)

mc

= ke — k,

-] -[2]-o

respectively. As mc > N, according to (11), the k¢ is
less or equal to k (k¢ < k), which places the solution
for retiming (15) at negative part of r(p) axis. The
graphical representation of retiming (15) is sketched
in Fig. 15.

Fig. 15 and solution for retiming (15) show that
the number of required successive input words
{x}, used for simultaneous processing in architec-
ture from Fig. 15, is k — kc + 1. Actually, input
word, Xx;, is exploited as an operand in k — kc + 1
successive computations on different nodes. For
the chosen folding factor N (N > 1) input data
word x; is active in the folded system for
T=(k—kc+ 1) N clock cycles.

The minimal number of registers, R, corresponds
to the maximal number of active variables that is
obtained for k- = 1. Thus, the minimal number of
registers is R =k — 1 + 1 = k. Since the folding fac-
tor is NV, a new input data word will be entered into
the folded system every N clock cycles. Graphical

Fig. 15. Graphical representations of retiming: (a) for case
kc =1, mc = L; (b) for case kc =3, mc = L/3.

representations from Fig. 15 shows that entering is
required at n-mc (m=12,...,kc—1) time
instances, also.

According to the previous discussion, graphical
representation of input data life cycle is generated
(Fig. 16). Horizontal dashed lines in Fig. 16 repre-
sent the time instances, while vertical lines represent
activity of input data words. The input data word x;
is “live” since it enters the architecture (beginning of
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(ks Dymc+2
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Fig. 16. Graphical representation of life cycle in general form.

vertical line), and becomes ‘“dead” as soon as all
computations that use x; are completed (dot at the
end of vertical line), as it is shown in Fig. 16.

The next step is the forming of allocation table.
Allocation table shows the allocation of input words
in registers. Allocation table is obtained using input
data life cycle form Fig. 16, and it is shown in
Fig. 17.

5.3. Architecture of folded FIR filter with changeable
number of coefficients

Hardware module for input data entering
(Fig. 18) is designed according to the allocation
table from Fig. 17.

The general form of folded FIR filter architecture
with changeable number of coefficients and coeffi-
cient length is given in Fig. 19. Folding sets Sy,
Si,...,Sk_1 are shown in dashed boxes (Fig. 19).
Each folding set contains N operations. Initially,
the computation starts in folding set S, where the
product 2° - cp._1 %o is obtained in the first clock
cycle. In the next clock cycle folding set S; generates
the partial product 2' -c,i(,_l -xo adding previously
computed partial product from folding set Sy. Thus,
the value(2’ ¢} | -xo)+ (2" ¢}, -x) is entered
into the next section, which performs the operations
from S», in the third clock cycle.

input Dy D, Dy
0 X0
1 *o Xo
2 Xo Xo -
k-1 X0 = X
X Xy
[~
N X
N+1 X X1
N+2 X X1
iN X,
s
me X;
mgtl x, [T x,
(Ga N Xi
(k-1)N | Xtkc1ym /N
(k-l)NJFl x(kc-l)mc/N x(kc—l)mc/
(k=1)N+2 | Xk Dym IN | Xk Dymg /.

. |
L=kN-1| X1 | \ | \

Fig. 17. General form of allocation table.

HT = EN+0}=123,... ,
HT=ime} i=123,.. !

Fig. 18. Hardware module for input data entering.

The next important time instance is (k + 1)st
clock cycle. In that clock cycle both input data path
and summation path are folded from section S; _
to So. In input data path product 2% - x, is present
at input of the section Sy, while in the summation
path (2°- cpo_1 - Xo0) + (2" Crooy X))+ F (2F1.
il -x0) enters the same section. S, adds
28 cirl - Xp to the entered sum. However, the com-
putation for the coefficient ¢;._; is not finished yet.

The complete product c¢,._1x, is obtained in the
section S(u.—1)modx during clock cycle mc. The com-
putation of ¢,._ox; starts in (mc + 1)st clock cycle.
The section S,,.moax cOmputes

{ c/(ic—le) +(2'- cllcc—l "Xo) +
+ (2"""1 . CZC:II “x0)} + 20. cﬁfz X

= (Cre—1x0) + (2" ), - x1).
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(T#IN+0} 1=123,..
(Tim,}

i=1,2,3,...

Fig. 19. Folded FIR filter architecture with changeable number of coefficients and coefficient length.

In order to explain method of operation we have
started the explanation with computation of y, .,
that is the first result where all coefficients are
included. Let us note that in the simultaneous pro-
cess the architecture starts with computation of all
results Yy, Vo2 - - -+ ¥, In reverse order. New out-
put word {y} is generated every N clock cycles. The
first generated result is y,, which is obtained using
only one coefficient (yy = ¢¢ - x¢) requiring mc plane
operations. As output words are present in output

lines each Nth clock cycle, initial latency if mc > N
is ¢ - N clock cycles, where ¢ is the smallest integer
for which the condition ¢+ N — mc > 0 is satisfied.
For cases when mc < N initial latency is equal to
mc.

The data flow through the folded architecture for
case k=3, N=4, kc =2 and mc =06 is given in
Fig. 20, and the functional block diagram of the
derived folded architecture from Fig. 19 is shown
for case k =3 and N =4 in Fig. 21. The numbering

PUFA io
S,
0

c?20x0 >Z§;%/

o
S
s, | © |

c1222x1§c32 c%22x2
k=1 2 3 4 5 % 7 8 9 10 11
Yo=CoXo yi=coxte xg

Fig. 20. Data flow for folded architecture (k =3, N =4, kc =2 and mc = 6).
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Fig. 21. Functional block diagram of folded bit-plane FIR filter with changeable number of coefficients.
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system of the architecture from Fig. 21 is inherited
from the BPA from Fig. 4 (2’s complement for
{x}, and unsigned coefficients).

The proposed architecture supports the opera-
tion with changeable number of coefficients and
coefficient length. The mechanism for throughput
increasing can be easily exploited on proposed
architecture [14,15]. Let us note that the ordering
of coefficient bits depends on number of coefficients
kc and coefficient length mc. The folded array from
Fig. 21 requires the involvement of specialized hard-
ware module for feeding the architecture with coef-
ficient bits. The coefficient bit supply module
(CBSM), shown in Fig. 21, provides the proper
ordering of coefficient bits. The module is based
on mathematical dependencies that are inherent to
the folding dependencies between operations and
functional units, which are described with folding
set assignment (10).

5.4. Synthesis of coefficient bit supply module for
folded architecture

Assume that operation p (1 < p < L), shown in
Fig. 13, performs multiplication of input data words
by coefficient bit ¢/. According to (10), operation p
belongs to folding set s = (p — 1) mod k, with fold-
ing order r = (p — 1) mod N. In other words, folded
architecture multiplies input data word (Figs. 19
and 20) by coefficient ¢/ on folding set
Ss(0<s<k—1) in time instance J-N-+r
0<r<N-1;0=0,1,2,...). The operation that
has position in DFG equal to p (Fig. 13), according
to folding set assignment (10), can be described as

p=mclkc — (i+1))+j+1 (17)

The dependency between folding set s
(0<s<k—1) and folding order r of coefficient
bit ¢; with weight 2J, using (10) and (17), is obtained
as
mod k&

mod N.

s=(mc-(kc—(i+1))+))

r— (e - (ke — (i4+ 1)) + ) 18)

Expression (18) describes the folding set s that
performs multiplication by coefficient ¢/ in time
instances 0 - N+r(0<r<N-1;0=0,1,2,...).

Inverse dependencies, denoted as i = f{s,r) and
j=g(s,r), can be obtained by mapping position of
operation p to matrix Ay in accordance with fold-
ing set assignment (10). Each column in matrix Ay

represents one folding set S, (0<s<k—1) and

each row stands for time instances r (0 <r < N — 1)
where the folding set, S;, performs operation p.
Matrix Ay for the case when k=3 and N=41is

1 5 9
10 2 6

Azyq = 7 11 3l (19)
4 8 12

General form of matrix A,y is

1 N+1

Ak><N =

k+1

(20)

With aim to simplify the solution, and to empha-
size dependence between operation p and its posi-
tion in matrix A, modulo dependencies from
(19) are removed and new matrix A5, is created.
Matrix A5, for the case when k=3 and N=4
have the following form:

1 59
v 2 610 o)
64 317 11

4 8 12

The value on position (s,r) in matrix (21) can be
described as
0, s=>r
1, s<r’
(22)

p:((s+a~k)—r)-N+(r—|—1),a:{

Coefficient bits in DFG from Fig. 14 are assigned
to operations according to the following:

i:kC—L—F_IJ

e (23)

j=r@-1)
Using (22) and (23), dependencies i = f{s,r) and

j=g(s,r), can be developed as

mod mc.
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ke 1 K((sﬁ—a-k)—r)-NJrr)J,

mc

{0,521/
a=q—

I,s<r (24)
j={(s+a-k)—r)-N+r) mod mc,

{07521’
a=q—.

I,s<r

According to (18) and (24) CBSM can be devel-
oped as two dimensional array of latches with k
rows and N columns, where each latch stores one
coefficient bit. Parameters kc and mc determine
the reordering of coefficient bits. In order to synthe-
size the reordering array, which will reorder the
coefficient bits from input coefficient bit-stream
entered in regular form, let us determine the final
position of coefficient bit ¢ _, within reordering
array. From (18), coefficient bit ¢; _, will be placed
in the first folding set (s = 0, the first row in reorder-
ing array), with timing order r =0 (the first col-
umn). The coefficient bit c,lcfl will be placed in the
second folding set (s = 1, the second row), with fold-
ing order r =1 (the second column), etc. The coeffi-
cient bit ¢j~" will be placed in the last column of
the last row.

In respect to the previous analysis, CBSM has to
provide initialization (reordering) mode, where
coefficient bits are entered in bit-serial manner.
The least significant bit of the last coefficient
(cg._,) should be entered first, followed by coeffi-
cient bit ¢; _,, etc. The coefficient bits should flow
through the reordering array following described
reordering path. CBSM array is shown in
Fig. 22a, where reordering, i.e., initialization path,
is shown with dashed lines.

CBSM has two operational modes. The first, ini-
tialization mode, when coefficient bits are entered
into the CBSM, and the second, run mode, when
CBSM feeds the array with coefficient bits. As the ini-
tialization mode was analyzed by (18), the run mode
can be analyzed in the same manner using (24). Coef-
ficient bits flow during the run-mode is shown with
solid lines in Fig. 22. Rows are implemented as shift
registers, so during the run mode coefficients rotate
through the rows from right to left, feeding each fold-
ing set of folded array with coefficient bits in correct
order (Fig. 22a). Initial positions of bits within
CBSM for k=3, N=4, kc =2 and mc = 6, after
initialization, is shown in Fig. 22b.

The number of clock cycles, required for initializ-
ing the structure, is k- N. After k- N clock cycles,

Fig. 22. (a) CBSM for k=3, N=4, kc =2 and mc = 6 and (b)
layout of coefficient bits after initialization.

coeflicient bits are loaded for the beginning of com-
putation. In the processing mode coefficients rotate
through the rows from right to left.

Programmability of CBSM assumes changing of
both number of coefficients and coefficient length
with aim to provide flexibility as it is shown in
Fig. 11. The synthesized module is able to handle
feeding of folded array that performs computation
with deferent number of coefficients and coefficient
length.

Product of number of coefficients and coefficient
length (kc - mc) is invariable for particular folded
array in respect to (11), and it is equal to the prod-
uct of number of folding sets and folding factor
(k - N). Decreasing the coefficient length (mc), num-
ber of coefficients (kc) must be increased. In most
applications there is no need for increasing the num-
ber of coefficients each time when coeflicient length
is decreased, and in the same time, there is no need
for increasing the coefficient length each time when
number of coefficients is decreased.

If number of coefficients (kc) in these cases
remains the same, fewer operations are required to
complete the computation. Therefore, if folded
architecture is able to meet the requirement of
reducible number of folding sets (k) or reducible
folding factor (&), then architecture is able to
increase throughput each time when -coefficient
number (kc) or coefficient length (mc) is reduced,
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in respect to equation k - N = k¢ - mc. The architec-
ture throughput in that case could be increased
k - Nfk¢ - mc times.

5.5. Reducible folding factor

Let the coefficient length mc be reduced to mg,
while the number of coefficients k¢, in the imple-
mented architecture, remains constant. Straightfor-
ward way to reduce mc is to replace the most
significant bits of coefficients with zeros. Initial state
of the CBSM from Fig. 22b, for k=3, N =4,
kc =2 and mc = 6, where the coefficient length is
reduced to mf =3, is

0 0
g 0 ¢ O
1 1

0 ¢ 0 ¢

2 2
cg 0 ¢ O

In respect to coefficient bits ordering during the
initialization of CBSM (Fig. 22a), for the case
k=3, N=4, kc=2 and mf =3, coefficient bits
should enter the architecture in following order:

210 210
000c;cyc,000c ¢ cf.

Replacing the most significant coefficient bits
with zeros the coefficient length is reduced, but
number of computations remains the same as well
as the throughput of architecture.

In order to reduce the coefficient number (kc) or
coefficient length (mc), at least one of parameters k
and N has to be changed. Let us consider the follow-
ing scenario, with aim to find out which parameter
is more suitable for changing.

The number of rows in folded array from Fig. 21
is equal to the number of folding sets (k). Thus, the
number of folding sets cannot be changed in a
straightforward manner. The number of columns
in folded array is mc+ n+logkc. By reducing
coefficient length mc fewer number of columns is
required for computation. However, performing
computation on wider bit-planes does not affect
nor computation time or accuracy.

The number of rows in CBSM is equal to the
number of rows in folded array (k), while the num-
ber of columns is equal to folding factor N. Number
of columns in CBSM can be reduced using shift reg-
isters with changeable length, as it is shown in
Fig. 23.

Using CBSM with changeable length, CBSM+,
(Fig. 23), layout of coefficient bits after initialization
for kc =2 and mc =3 is

L%
serial in®

Fig. 23. CBSM+ for k=3, N=4.

0 .0
el ¢ 0 0
-

¢ ¢ 0 0],
22

cg ¢g 00

and coeflicient bits should be entered in following
order:

02002101 0
00c,c100c;c,00c ;.

Ordering of coefficient bits in initialization array
relays on modulo dependencies, and it can be easily
implemented by algorithm within software that rec-
onfigures folded array, in respect to (19) and (20).

The computation time linearly depends on coeffi-
cient length for constant number of coefficients.
Instead of extending the coefficient to the full coef-
ficient length when the operation with coefficients
with smaller length is required, the proposed
CBSM+ reduces the folding factor according to
the coefficient length and increases the throughput
k- N/kc - m{ times.

6. Implementation

The folded FIR filter architecture was described
in VHDL as a parameterized FIR filter core. The
implementation was done onto the VirtexE FPGA
with aim to illustrate what filtering can be carried
out onto the configurable folded architecture. The
implementation provides the results that relate on
occupation and throughput. Implementation results
for 14 different programmable folded architectures
are obtained by Xilinx Webpack ISE 6.3, without
any specific user constraints, using default optimiza-
tion effort. The results are presented in Table 1. One
row stands for one implemented architecture (with
input word length n, number of implemented rows
of mul/add array k, max folding factor that can
be achieved Nyax, and implemented length of out-
put word y). Ohe number of used CLBs in target
FPGA, equivalent gate count, clock period and
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Table 1
Implementation results for different array sizes
n k Nmax y Area Clock (ns) Freq. (MHz)
CLB Gate count (KG)
8 3 7 13 37 1.78 7.02 143
8 4 8 18 72 3.38 9.95 101
8 4 16 26 108 5.17 8.00 125
8 4 32 42 183 8.76 11.20 89
8 8 4 15 95 4.30 9.80 102
8 8 7 19 129 5.89 11.50 87
8 8 8 20 136 6.31 9.40 106
8 8 16 27 201 9.40 11.50 87
8 16 4 16 157 6.86 9.40 106
8 16 8 20 223 10.16 11.80 85
8 16 16 28 359 16.78 11.00 91
8 32 4 17 263 10.56 12.50 80
8 32 8 21 366 15.55 11.30 88
8 32 16 29 604 26.89 11.50 87

max operating frequency are given for each imple-
mented architecture. Graphical representations in
Figs. 24 and 25 are generated from Table 1.

Fig. 24 illustrates the gate count, for architec-
tures implemented with k rows in mul/add array,
as a function of maximal folding factor (Nyax)-
Gate count linearly depends on Nyax. The increas-
ing of Nyax requires wider registers for coefficient
storage (Figs. 22 and 23), wider rows of basic cells
in mul/add array, as well as wider (vector merging)
adder (the length of output data word is
y=n+ Nmax T logy k). Let us note that no trunca-
tion is involved.

Fig. 25 shows the gate count for architectures
with different maximal folding factors, as a function
of number of rows in mul/add array (k).

Gate count [KG]

25

0

Fig. 24. Gate count as a function of maximal folding factor
Nmax-

Gate count [kG]

A

25

20

0

Fig. 25. Gate count as a function of number of rows in mul/add
array.

The previous discussion concerns the implemen-
tation of different architectures. However, the most
important feature of proposed architecture is the
configuration of number of coefficients, coefficient
length and folding factor.

Table 2 illustrates the configuration abilities of
two implemented architectures, n=38, k=3,
NMAX:7a y= 13 and l’l:8, k= 16, NMAX:4,
y =16 (values indicated in bold in Table 1). The
table shows the implementation results for clock
period, reconfiguration period, initial latency, and
throughput for possible programmed values of k¢
and mc, taking into account chosen folding factor
N (Nmax = N = 1). Reconfiguration time is equal
to k- N clock cycles.
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Table 2
Throughput in function of folding factor (N)
k N kc mc Clock (ns) Reconf. (clk) In.lat (clk) Throughput 1/(N - clock) (MHz)
3 7 7 3 7.02 21 3 20.41
3 5 5 3 7.02 21 3 28.57
3 4 4 3 7.02 21 3 35.61
16 4 8 8 9.4 64 16 26.60
16 3 6 8 9.4 64 18 35.46
16 2 4 8 9.4 64 16 53.19
16 1 2 8 9.4 64 16 106.38
Th[r&ukg[kzlimt tap FIR filter); mode 2 (5-tap FIR filter); mode 1 (5-
A tap FIR filter); mode 0, weak filter (3 or 5-tap FIR
| | | | filter). Coefficients for all filtering modes are within
100 the range 1-4 (mc = 3).
w0l I According to filtering modes and coefficient
length, we have chosen the folded array with k =3
60 and y = 13, and maximal folding factor Nyiax =7
w0l (bold values indicated in first row of Table 1) that
— can cover all previously mentioned filtering modes.
20 1 Configuration abilities for the chosen folded array
A SN S SR S S S B are given in Table 2. Due to (16), 3 tap filter is real-
0 8 7 6 5 4 3 2 1 N ized as 4 tap filter with ¢3; =0.

Fig. 26. Throughput as a function of chosen folding factor.

Using the data from Table 2, the graphical repre-
sentation in Fig. 26 that describes the throughput as
a function of chosen folding factor, is generated.

The increasing of throughput is achieved by
decreasing of folding factor.

7. Configurable folded array as H.264/AVC
deblocking filter (implementation and comparison)

Traditionally, block-based coding techniques
partition the image into non-overlapping square
blocks. To reduce the blocking artifact, the deblock-
ing filter is adopted in H.264/AVC to improve both
objective and subjective video quality, especially in
the low-bit rate or highly compressed environment.
The choice of filtering outcome depends on the
boundary strength and the gradient of image sam-
ples across the block boundary. Many solutions
for deblocking filters have been proposed
[2,3,16,17]. In order to demonstrate the design of
the deblocking filter, which is based on the proposed
configurable folded architecture from Fig. 21 and
embedded in H.264/AVC encoder/decoder [16,17],
we use deblocking method with 5 different FIR filter
modes, given in [3]. Filter modes are: mode 4, stron-
gest filter (7-tap FIR filter); mode 3, strong filter (7-

To evaluate the accuracy and efficiency of the
proposed architecture we described the proposed
design in VHDL, at RTL level, which is synthesiz-
able. We have evaluated mentioned folded array
for two cases. The first is with CBSM (Fig. 22),
while the other is with CBSM+ (Fig. 23). It should
be noted that the reducible folding factor is
employed in the second case. According to the
JVT verification model [18], a C-program model
of deblocking filter was also developed to generate
input simulation vectors. For the sake of compari-
son, we give Table 3 that contains implementation
results from [16] and [17], as well as our results.

Folded architecture with CBSM, does not pro-
vide folding factor reduction, and filters all edges
using Nyax =7 filter regardless to the filtering
mode. The number of cycles per macro block
(MB) required for this architecture is constant
(Table 3). The architecture with CBSM-+ provides
the folding factor reduction, thus the number of fil-
tering cycles depends on video content. Table 3
gives the best, the worst and the number of cycles
per MB obtained for well known Foreman video
sequence. The best and the worst cycles per MB val-
ues are obtained for hypothetical video sequences
where all edges are filtered using 4-tap and 7-tap fil-
ters, respectively.

Table 3 shows that proposed architectures have
more than 10 times smaller gate count than architec-
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Table 3
Comparison of H.264/AVC deblocking filters

Yuwen Huang’s Arch.  Bin Sheng’s Arch.  Our arch. with CBSM  Our arch. with CBSM+

Tech. 0.25 pm 0.25 pm FPGA VirtexE FPGA VirtexE

Freq. (MHz) 100 100 100 100

Gate count (in K)  20.66 24.00 1.61° 1.78°

Cycles/MB 614 446 7552 Best — 4480; Worst — 7552; Foreman —
5572

AT? 12685 10704 12158 9918

QCIF - - 161.8 181.3

CIF - - 40.9 44.8

4CIF - - 9.7 11.4

HDTV 452 62.3 4.3 5.1

*** For QCIF (176 x 144), CIF (352 x 288), 4CIF (704 x 576), HDTV (1280 x 720) given values are in (fps). **** Verilog code for Huang’s
and Shengs architectures was validated using 0.25 pm CMOS cells library [16,17].
* For area-time (AT) measure we take (Gate count) X (Cycl./MB).

° The gate count is obtained as “equivalent gate count” from Xilinx WebPack implementation report.

tures proposed in [16] and [17]. Gate count reduc-
tion is achieved at cost of time. Our architectures
have approximately 10 times greater number of
cycles per MB. Proposed architecture with CBSM
has nearly the same AT value as the architecture
proposed in [16], but 12% worse AT value than
[17]. Folded array that exploits reducible folding
factor (with CBSM+) has 21% better AT value than
[16], and 7.3% better than [17]. It should be noted
that configurable folded array with k=3, y =13,
Nymax =7 and CBSM can meet the requirement
for real-time deblocking of video sequences in CIF
(352 x 288, 30 fps) at 74 MHz, while the require-
ment can be met at 67 MHz with reducible folding
factor employment (CBSM+).

8. Concluding remarks

We considered the synthesis of configurable
folded FIR filter architecture. In order to enable
the successful application of folding technique, we
transformed traditional bit-plane architecture, and
involved dynamic operation assignment. The idea
of mapping different operations on the different
hardware units in the processing array structure
was successfully implemented on the folded bit-
plane processing array. Thus, the synthesis of folded
bit-plane processing array for FIR filtering was car-
ried out. Configuration possibilities were well
explored and encompassed by the application of
folding technique. The proposed folded architecture
supports on-the-fly configuration of the number of
taps and the coefficient length. The architecture pro-
vides flexible computation and offers the possibility
of increasing the folded system throughput, by

reducing the number of operations performed on
single functional unit, when system performs the
computation with reduced number of taps or coeffi-
cient length. FPGA implementation results were
presented to illustrate configuration abilities, as well
as to show design trade-offs related to the occupa-
tion of chip resources and achieved throughputs.
A wider application area and finding of suitable
area—time trade-offs are provided for the bit-plane
architecture involving the possibility of filter config-
uration through the application of folding tech-
nique. The area—time trade-offs for configurable
folded array were exploited in design of H.264/
AVC deblocking filter for embedded mobile com-
puting devices. It resulted in deblocking filter design
with low-gate count which meets the requirement of
real-time deblocking in target applications. The
array is restricted for the folded factor at cost of
time. In deblocking application, more than 10 times
smaller gate count, in respect to designs in [16] and
[17], is achieved by nearly 10 time increased number
of cycles per MB. The overall product of gate count
and number of cycles per MB for the proposed
architecture with reducible folding factor is slightly
better than [16] and [17]. It makes our platform
more efficient for embedded mobile computing
applications where computational time, based on
image format, is not of primary importance.
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