
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Version control in project-based learning

Ivan Milentijevic *, Vladimir Ciric, Oliver Vojinovic

Computer Science Department, Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14,

P.O. Box 73, 18000 Nis, Serbia

Received 4 September 2006; received in revised form 28 November 2006; accepted 11 December 2006

Abstract

This paper deals with the development of a generalized model for version control systems application as a support in a
range of project-based learning methods. The model is given as UML sequence diagram and described in detail. The pro-
posed model encompasses a wide range of different project-based learning approaches by assigning a supervisory role
either to instructor or students in different project stages. Different strategies for supervisor role assignment are given. Pro-
ject duration, project milestones, as well as a number of team members are discussed in respect to project-based learning
method that the proposed model supports. Possible implementations of different project-based learning approaches on the
proposed model are demonstrated by setting the model parameters. Version control server security issues are discussed in
the manner of implementation aspects of the proposed model. One of possible model implementations is evaluated in
respect of cooperation on the test group of 21 students. Implementation details are presented and compared with other
approaches. Mentoring and monitoring students efforts during the development by implementing proposed model with
specific model settings introduces controlled cooperation with high clarity in evaluation of individual students work. Using
open source version control software on Linux platform, with web interface package, we implemented a low-cost support
for project-based learning.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Education; Version control systems; Hardware design; Software engineering; Project-based learning

1. Introduction

Project-based learning (PBL) is a constructivist pedagogy that intends to bring about deep learning by
allowing learners to use an inquiry based approach to engage with issues and questions that are rich, real
and relevant to the topic being studied. It is designed to be used for complex issues that require students to
investigate in order to understand (Barron, 1998). PBL is more than just a web-quest or internet research task.
Within this type of learning, students are expected to use technology in meaningful ways to help them inves-
tigate or present their knowledge. Technology is infused throughout the project to reflect the emphasis on
technological and ‘‘soft’’ skills, as well as academic content (Blumenfeld, 1991).

0360-1315/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compedu.2006.12.010

* Corresponding author. Tel.: +381 18 529 603; fax: +381 18 588 399.
E-mail address: milentijevic@elfak.ni.ac.yu (I. Milentijevic).

Available online at www.sciencedirect.com

Computers & Education 50 (2008) 1331–1338

www.elsevier.com/locate/compedu



Author's personal copy

PBL relies on learning groups that take full responsibility for their learning, and PBL framework differs
from inquiry-based activity in its emphasis on cooperation and collaboration between team members. This
is what makes PBL constructivist (Barron, 1998). Cooperation, as a term, refers to the practice of working
in line with commonly agreed goals and possible methods, instead of working separately in competition.
Cooperation is the antithesis of competition, or in other words, an altruistic sharing, while term collaboration
refers abstractly to all processes wherein people actually work together at the same time (Barron, 1998; Blu-
menfeld, 1991). There are a number of different approaches in PBL (Atkinson, 2001; Breiter, Fey, & Drechsler,
2005; Glassy, 2006; Janneck & Bleek, 2002; Losoncy, 1996; Reid & Wilson, 2005), which differ in project dura-
tion, number of team members, as well as in the way the students collaborate and/or cooperate.

PBL is generally a less structured approach than traditional, teacher-led classroom learning. However,
working in non- or low-structured environment can introduce significant side effects. In such an environment
it is difficult for students to clearly identify project design-flow phases. Furthermore, cooperation and collab-
oration levels are difficult to control, which leads to the lack in clarity of individual work mentoring and eval-
uation. Organizing PBL courses in engineering is always a challenging task for instructors due to the fact that
projects can be complex and demanding for supervision. Thus, instructors often engage software support for
managing and communication, using general purpose groupware tools (synchronous or asynchronous)
(Glassy, 2006; Reid & Wilson, 2005), or creating specialized tools for learning purposes (Breiter et al.,
2005; Janneck & Bleek, 2002).

With the aim to build single environment that can support various different project-based learning methods,
we transfer the idea of project management based on version control to project-based learning, and implement
a low-cost PBL support. Version control allows multiple developers to share files in a safe, controlled environ-
ment, while automatically creating a history of the project’s evolution (Sussman, Fitzpatrick, & Pilato, 2004;
Vesperman, 2003). This paper deals with the development of a generalized model for version control systems
application as a support in a range of project-based learning methods. The model will be given as a UML
sequence diagram, and it will be described in detail. The proposed model encompasses a wide range of differ-
ent project-based learning approaches by assigning a supervisor role either to instructor or students in different
project stages. Different strategies for supervisor role assignment will be given. Project duration, project mile-
stones, as well as a number of team members will be discussed with respect to project-based learning method,
and cooperation and collaboration level that the model supports. Possible implementations of different pro-
ject-based learning approaches on the proposed model will be demonstrated by setting the model parameters.
Version control server security issues will be discussed in the manner of implementation aspects of the pro-
posed model. Evaluation of one possible implementation, in respect of cooperation, on the test group of 21
students will be given. Model implementation details in the manner of model parameters will be presented
and compared with other approaches. Mentoring and monitoring students’ efforts during the development
by implementing the proposed model with specific model settings introduces controlled cooperation with high
clarity in evaluation of individual students work.

The paper is organized as follows: Section 2 gives background of version control systems; Section 3 is the
main section and presents the generalized model of version control application in course organization; Section
4 is devoted to implementation results and comparisons, while in Section 5 concluding remarks are given.

2. Version control systems

With the aim to clarify the role of version control systems (VCS) as a potential support to project-based
courses, and to highlight the terminology, we give the basics of VCS.

Version control (also known as revision control or source control) is the management of multiple revisions
of the same unit of information. It is most commonly used to manage ongoing development of digital docu-
ments like source code, art resources or electronic models and other critical information that may be worked
on by a team of people. Changes to these documents are identified by incrementing an associated number or a
letter code, termed the ‘‘revision number’’ or simply ‘‘revision’’, and associated historically with the person
making the change. VCS is the system that provides version control (Sussman et al., 2004; Vesperman, 2003).

The electronic documents are stored in, so called, modules. A term module stands for a single project (set of
related electronic documents) managed by version control (VC) server. Fig. 1 shows a typical VCS topology.

1332 I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338



Author's personal copy

The VCS is established by adding a VC server to a local area network (Fig. 1). Modules stored and managed
by VC server are called repositories (Fig. 1). In VCS terminology, acquiring a copy of a module is called check-

ing out (the checked out files serve as a local working copy). The VCS server is usually equipped with security
management software. Depending on privileges, LAN users are either able or not, to check out specific mod-
ules (Fig. 1). Changes on the working copy are reflected in the repository by committing. Acquiring the latest
changes from the repository in the working copy is called updating (Sussman et al., 2004; Vesperman, 2003).

Mostly, two or more developers are working on the project at the same time. If two developers try to
change the same file at the same time, without any method of managing access, they may well end up over-
writing each other’s work. Some systems prevent ‘‘concurrent access’’ problems by simply locking files so that
only one developer at a time has write access to the central ‘‘repository’’ copies of those files. Others, such as
CVS, allow multiple developers to edit the same file at the same time, and provide facilities for merging
changes later. In the latter type, the concept of a reserved edit can provide optional means to explicitly lock
a file for exclusive write access, despite the merging capability (Sussman et al., 2004; Vesperman, 2003).

The VC server is a good core for development of project-based learning environment as long as it has both
access and security set up. Modules could be accessed from the same local network, or from a computer con-
nected through internet or another wide-area network (Fig. 1).

3. The role of version control system in course organization

The role of VCS from Fig. 1, along with associated web interface, during the project lifetime, is shown by
UML sequence diagram (SD) in Fig. 2. The SD consists of four timelines (vertical dashed lines). Two timelines
stand for actors (supervisor and student), while the other two are for system components. The role of super-
visor can be associated either to instructor or student, depending on particular learning method applied in the
course. The diagram in Fig. 2 is divided by horizontal dashed lines into five sections. The first two sections
stand for project definition and project breakdown activities. The third section delineates a process that begins
with the creation of the repository by the supervisor and that lasts until student checks out the repository; the
forth section is devoted to the process where student works on the task, while the last section stands for final
report approval.

In project management, a project breakdown is an activity with the outcome in a form of project break-
down structure (PBS). PBS is an exhaustive, hierarchical (from general to specific) tree structure of delivera-
bles and tasks that need to be performed to complete a project. The PBS is very common and is considered a
key part of project management. Its hierarchical arrangement allows easy identification of the terminal ele-
ments (the actual items to be done in a project). Being an exhaustive document of the project scope, the
PBS serves as the basis (indeed the backbone) for much of project planning. All the work to be done in a pro-
ject must trace its origin from one or more PBS entries (Dinsmore & Cabanis-Brewin, 2006). The first two
sections in Fig. 2 are devoted to project definition and breakdown, and performed by project supervisor.

The third section within SD relates to task assignment. The section begins with creation of repositories. One
repository can contain one task or group of few related tasks from PBS. The number of tasks associated with
the repository, as well as the number of students that have access to the repository, are model implementation

Fig. 1. Topology of Version Control System.

I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338 1333



Author's personal copy

decisions, and define the course learning method. Implementation solutions, which are of interest for project-
based learning, are covered by the proposed model as follows: one student—one task—one repository (1-1-1),
one student—multiple tasks—one repository (1-T-1), group of students—one task—one repository (S-1-1),
group of students—multiple tasks—one repository (S-T-1), and group of students—group of tasks—group
of repositories (S-T-R), where S,T,R are integers grater then 1.

The goal of the third section in SD is application for task assignment, or, in other words, request for access
to the repository (Fig. 2), which contains files related to the terminal element(s) of PBS. It is mentioned that
VC server should be equipped with web interface, which dynamically creates HTML response containing a list
of repositories. In order to highlight an overall project scope, the response should involve all repositories
related to the project which in turn are clearly marked as ‘‘done’’, ‘‘work in progress’’, or ‘‘available’’ (Faculty
of Electronic Engineering, 2006). Request for available repository is posted by a student (Fig. 2). Upon
requesting the access to repository, project supervisor creates an account and gives the student account specific
details (server address, protocol, user name, password, etc.). Using the received account parameters, student is
able to access VC server and check out files from the permitted repository. While checking out the files for the
first time, a student is provided with starter code, background material and templates for reporting docu-
ments, which in turn makes student a team member.

The fourth SD section is devoted to development. Once the project files are checked out, student is able to
begin work on the assigned task. In order to enable supervisor to monitor project work as a process, all work

Student

VCS Web InterfaceVCS Server

Supervisor

Project definition

Project breakdown

Repositories creation

Repositories are ready Get list 
List repositories

Repositories
HTML response

Choose

Request access to specific repository

Create an account

Account created

Account specific details

Check out

Module

*work needed to
achieve next
milestone

Commit

Report

Update

Repository changes

Evaluation

Evaluation of progress

Directions

Final report

Final report approval

Section 1 
(Project definition)

Section 3 
(Task assignment) 

Section 4 
(Work on task)

Section 5 
(Task termination)

*

* A group of tasks that belong to a single project has common sections 1 and 2, and each task has its own
sections 3, 4, and 5. 

Section 2 
(Project breakdown)

St
ar

tu
p 

ac
tiv

iti
es

 
T

as
k

T
as

k 
ev

al
ua

tio
n 

On-line or off-line consultations

Fig. 2. UML sequence diagram of a model for application of version control tools in project-based learning.

1334 I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338



Author's personal copy

should be done in increments (Fig. 2). The duration of incremental work is the model implementation param-
eter, and depends on used learning method. The end of each increment is considered a milestone. In each mile-
stone student should write a short report that contains a list of performed actions, short plan for the next
milestone achievement, and a list of problems that have occurred during the previous increment. Changed files
should be committed at the same time with report delivery (Fig. 2), and it is a key point in the model that
enables project monitoring. Supervisor is notified by the received report to update the repository (Fig. 2).
The decision about achievement of the task is made and using either on-line or off-line consultations student
is provided with suggestions and directions for further work. A crucial decision within this section is the dura-
tion of the work per increment. If the work in increment lasts too short, then students do not have enough time
to work on the task and to point out their skills. Thus, it can cause difficulties for both students and super-
visor. For students, it is difficult to work on the assignment keeping in mind milestones and reports that
should be written. For supervisor, it is hard to evaluate the goal achievement because of the shortness of work-
ing interval. On the other hand, using a too long increment period, the idea of project monitoring and man-
agement could be lost. Group of activities, marked as Section 4 in SD (Fig. 2), represents repetitive procedure
followed by evaluation of goal achievement in Section 5.

There are several aspects of proposed model that are left as implementation parameters: duration of pro-
ject, the role of supervisor, the number of students and tasks per repository, and duration of work per one
increment. These aspects are implementation decisions, and should be defined according to learning approach
that the model supports. Proposed model gives the possibility either for instructor or student to play the role
of supervisor in different sections of the model. It is up to instructor to decide where the supervisor role will be
passed to the students. The possible settings for supervisor role per model sections are shown in Fig. 3, and
marked as a1–a4.

Thus, in the a1 setting, supervisor role is never passed to student (Fig. 3). Such a setting is suitable for small
projects or even for demanding homeworks (Reid & Wilson, 2005). However, setting a1 does not provide a
team work. Allowing a student to be a supervisor in Section 4, well controlled team work is employed. Giving
the freedom to students to assign tasks and create repositories by passing them supervisor role in Section 3,
team work is moved to higher level in which more managing activities are performed by students (Glassy,
2006). Final issue is when instructor decides to give students supervisor role right after project definition
(Fig. 2), and to let them manage even project breakdown activities (Fig. 3). Such a setting is very close to real
life projects, where students have almost all responsibilities in project management. This approach requires
project duration of at least one semester and should be foreseen by curriculum designer (Breiter et al.,
2005). Different settings of supervisor role (al–a4) are followed by different model implementation parameters
such as number of students and tasks per repository, duration of one increment, as well as duration of project.
The parameters should be set by instructor according to the chosen setting for the supervisor role. Suitable
parameters settings are shown in Table 1.

Settings a1–a3 are intended for course organization and can be used in different courses during studies,
while a4 is applicable for bigger projects that can involve several courses from different modules which are
important for student specialization. The a4 setting is applicable for senior level students, usually no more
then once during the studies.

Fig. 3. Possible settings of supervisor role on the proposed model.

I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338 1335



Author's personal copy

Security issues related to VCS should be considered depending on the chosen model setting (Table 1). There
are two aspects of security: internal and external security. Internal security relates to security issues between
project members (VCS actors) and depends on the collaboration degree of the chosen model setting approved
by instructor. External security is the security policy towards the outside world. Discussion on external secu-
rity makes sense only in case of low internal security level. A low level of external security can provide an
open-source status to the project.

Internal security policy should be very rigorous in a1 setting. Students should not be able to see each other’s
work. It means that neither collaboration nor cooperation between students is involved. Setting a2 is designed
to avoid this problem by letting students see (read-only) each other’s work, but still keeping one repository per
student. Setting a2 allows cooperation maintaining highly-controlled environment. Unlike a2, a3 setting does
not hide VC maintaining activities (Fig. 3). If a3 is set as S-l-1, then a3 is more like a1 setting, while in case S-
T-1 it is more like a2. In the S-T-1 case, a3 setting requires lower internal security, gives more control to stu-
dents, and allows more students per project. In order to develop professional and managing skills of students,
instructor can decide to apply a4 setting with lowest internal security, which allows high degree of collabora-
tion between team members.

4. Implementation results

We implemented version control as project-based learning environment in senior-level course ‘‘Algorithms
and architectures for dedicated architectures’’ at the Faculty of Electronic Engineering, University of Nis, Ser-
bia. The course, which follows Parhi’s book (Parhi, 2000), is devoted to VLSI digital signal processing systems
with emphasis on design and implementation. Having in mind that this course is an advanced one, and that
prerequisite is knowledge of computer architecture area, VLSI design, and basic DSP algorithms, we
employed project-based learning as the most suitable method that brings together algorithms and circuit
designs for special purpose DSP applications. Stages, which each candidate has to pass working on the project,
are shown in Fig. 4.

Model proposed in Fig. 2 is general and covers different implementations of project-based learning. In
order to force the students to pass all stages in hardware design flow from Fig. 4, and allow them to use
the components designed by other students, our implementation is based on a2 model setting that allows coop-
eration maintaining highly-controlled environment.

Proposed model (Fig. 2) is applicable for any version control system that can provide web interface. In
order to implement the system from Fig. 1, for version control we decided to use CVS (Vesperman, 2003)
on Linux platform, because it is an open source VC software, well documented, with several web interface
packages, such as cvsview (Vesperman, 2003). Subversion (Sussman et al., 2004) is also a possible solution.

Table 1
Recommendations for model parameters setting with respect to applied learning method

Project duration Increment duration (weeks) Number of students-number of tasks-
number of repositories per project

a1 1 week for homeworks, few weeks per
project task

1 1-1-1

a2 Up to one semester 1 or 2 1-1-1 or 1-T-1
a3 1 semester 1 or 2 S-1-1 or S-T-1
a4 1–4 semester 2–4 S-T-1 or S-T-R

Problem
study

Architecture
choice

The application
of design
technique

Hardware
description

in HDL

FPGA
impl./
testing

Fig. 4. Design flow.

1336 I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338



Author's personal copy

When the system from Fig. 1 is used according to the proposed model (Fig. 2) with a2 setting (Fig. 3), there
is no need to consider security issues further from preventing a student modifying or accidentally destroying
other students work. Furthermore, the problem of cheating preclusion, which relates to modification of time-
stamps on committed files by students, with the aim to show better time performance (Reid & Wilson, 2005), is
avoided by involving written weekly reports. The reports are useful not only to TS to get an overall picture of
the previous work and possible problems, but also to students as they force them think about and summarize
results and achievements, thus giving a clue for the better start of the next incremental period.

We had a test group of 21 students in the duration of one year. The course web site, CVS web interface, and
course forum, have low-level external security. In other words, they are public available at (Faculty of Elec-
tronic Engineering, 2006). For the test group, we made a record of raised problems posted by weekly reports
and forum. Table 2 gives the number of students that faced typical problems (rows in Table 1) with respect to
task phases shown in Fig. 4 (columns). The table values are written as y/x, where x is the total number of stu-
dents that faced the problem, while y stands for students that are recorded in CVS log files while mining other
students work.

From Table 2 it can be seen that there is a significant cooperation between students, which is enabled by the
applied model setting. Having in mind project flow stages, we notice the following:

� Carefully selected scientific and technical papers by teacher, as well as recommendations for book chapters
are provided by the system, right after the first login (Fig. 2). This enables good and fast start-up for stu-
dents tasks.
� Model setting a2 allows students to explore source codes and to use the components designed by other stu-

dents. These activities support critical stages of the project such as architecture choice and application of

design technique by allowing studying of other students work (Table 2). By leaving the completed assign-
ments on CVS, we enable students to study the examples of different architecture design styles, to notice
the differences in arithmetic, and to become aware of area-time-power compromising techniques in hard-
ware design.
� Mentoring and monitoring students efforts during the development by a2 model setting, rather then eval-

uating task results, introduces high clarity in evaluation of individual students work in highly controlled
environment.
� Students get more familiar with version control, and accept it as a very helpful tool.

At the end, let us identify where our approach is among the others. Settings a1–a4 of the proposed model
(Fig. 2) covers a wide range of different project-based teaching methods. The solution proposed by authors in
(Reid & Wilson, 2005) is assumed as setting a1 of the proposed model, while the teaching method used in
(Glassy, 2006) can be accomplished by implementing the proposed model with setting a3. Ambitious projects
described in (Breiter et al., 2005) could be well-supported by the proposed model by setting the track a4 from

Table 2
Typical problems occurrence and CVS log-records per design flow stage

Problem

Task phase Problem study Architecture choice Design technique Hardware description FPGA

Background 8/12 2/3 – – –
Design choices – 7/9 12/18 4/12 –
Code-related – – 8/12 2/8 0/6

Table 3
Comparison of different project-based learning methods

Model setting Professional skills Soft skills Cooperation Collaboration Clarity of work evaluation

al- Reid and Wilson (2005) High No No No High
a2- our impl. High Low–Medium Low No High
a3- Glassy (2006) High Medium Medium Low–Medium Medium–Low
a4- Breiter et al. (2005) High–Medium High High High Low

I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338 1337



Author's personal copy

Fig. 4. Different teaching methods can be supported by the proposed model depending on what type of skills
student has to acquire during course. Additionally, methods differ in duration of project, degree of coopera-
tion and collaboration, as well as in clarity of individual work evaluation. The mentioned aspects of a1–a4
model settings are summarized in Table 3.

5. Concluding remarks

In this paper, the development of a generalized model for version control systems application as a support
in a range of project-based learning methods is presented. The proposed model encompasses a wide range of
different project-based learning approaches by assigning a supervisor role either to instructor or students in
different project stages. Different strategies for supervisor role assignment are given. Project duration, project
milestones, as well as a number of team members are discussed in respect of project-based learning method
that the proposed model supports. The model is given as UML sequence diagram and described in detail. Pos-
sible implementations of different project-based learning approaches on the proposed model are demonstrated
by setting the model parameters. Version control server security issues are discussed in the manner of imple-
mentation aspects of the proposed model. One of possible model implementations is evaluated in respect of
cooperation on the test group of 21 students. Implementation details are presented and compared with other
approaches. Mentoring and monitoring students efforts during the development by implementing the pro-
posed model and defining model specific settings, introduces controlled cooperation with high clarity in eval-
uation of individual students work. Using open source version control software on Linux platform, with web
interface package, we implemented a low-cost support for organization of project-based learning.

References

Atkinson, J. (2001). Developing teams through project-based learning. Hampshire, UK: Gower Publishing.
Barron, B. (1998). Doing with understanding: Lessons from research on problem- and project-based learning. Journal of the Learning

Sciences, 7(3, 4), 271–311.
Blumenfeld, P. C. et al. (1991). Motivating project-based learning: sustaining the doing, supporting the learning. Educational Psychologist,

26, 369–398.
Breiter, A., Fey, G., & Drechsler, R. (2005) Project-based learning in student teams in computer science education, Facta Universitatis. In:

M. Stojcev & I. Milentijevic. (Eds.), Electronics and energetics, Special issue on computer science education (pp. 165–180). Serbia:
Nis,vol. 18, No. 2, April 2005.

Dinsmore, P., & Cabanis-Brewin, J. (2006). The AMA handbook of project management (2nd ed.). USA: Amacom, American Management
Association.

http://L3.elfak.ni.ac.yu/algarh/, Faculty of Electronic Engineering. (2006) University of Nis, Serbia.
Glassy, L. (2006). Using version control to observe student software development processes. Journal of Computing Sciences in Colleges,

21(3), 99–106, February.
Janneck, M., Bleek, W-G., (2002). Project-based learning with commsy, Proceedings of CSCL 2002 pp. 509–510. Colorado, USA: Januar.
Losoncy, L. (1996). Best team skills. London, UK: CRC Press.
Parhi, K. (2000). VLSI digital signal processing systems (Design and implementation). New York: John Wiley & Sons.
Reid, K., & Wilson, G. (2005). Learning by doing: introducing version control as a way to manage student assignments. In Proceedings of

the 36th SIGCSE technical symposium on Computer science education (pp. 272–276). St. Louis, Missouri, USA, February 23–27.
Sussman, B., Fitzpatrick, B., & Pilato, M. (2004). Version control with subversion. USA: O’Reilly.
Vesperman, J. (2003). Essential CVS. USA: O’Reilly.

1338 I. Milentijevic et al. / Computers & Education 50 (2008) 1331–1338


