
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405
www.elsevier.de/aeue

Partial error tolerance for bit-plane FIR filter architecture

Vladimir Ćirić, Jelena Kolokotronis, Ivan Milentijević∗

Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, P.O. Box 73, 18000 Nis, Serbia

Received 16 November 2007; accepted 22 February 2008

Abstract

Whereas some applications require correct computation many others do not. A large domain where perfect functional per-
formance is not always required is multimedia and DSP systems. Relaxing the requirement of 100% correctness for devices
and interconnections may dramatically reduce costs of manufacturing, verification, and testing. The goal of this paper is to
develop a method for trading computational correctness for an additional chip area involved by fault-tolerance implementa-
tion. The method is demonstrated for the BP array in the following way: only the most significant bits of the output word
are made fault-tolerant. By introducing the concept of partially error-tolerant BP array, designers achieve one more degree
of tradeoff freedom. Formal definitions of the proposed terms are given. A mathematical path based on transitive closure
that generates an error significance map for the BP array is proposed. The design tradeoff is demonstrated through FPGA
implementation. The achieved area savings are presented as a function of a number of most significant fault-tolerant bits.
� 2008 Elsevier GmbH. All rights reserved.

Keywords: Error tolerance; Fault tolerance; Systolic arrays; FIR filtering

1. Introduction

As scaling approaches the physical limits of devices and
fabrication technology, designers will increasingly have to
consider qualitative changes. The key concerns include in-
creasing process variations, defect rates, and infant mortal-
ity rates [1]. As VLSI scaling continues along its traditional
path, we will soon be in a situation where chips will have
billions of devices and thousands of defects [2,3].

Fault tolerance (FT) is the property that enables a sys-
tem to continue operating properly in the event of failure
of some of its components, at the cost of hardware, time
or information quantity [4], which, in some cases, cannot
be justified [5]. Relaxing the requirement of 100% correct-
ness for devices and interconnections may dramatically re-
duce costs of manufacturing, verification, and testing. Such

∗ Corresponding author.
E-mail address: milentijevic@elfak.ni.ac.yu (I. Milentijević).

1434-8411/$ - see front matter � 2008 Elsevier GmbH. All rights reserved.
doi:10.1016/j.aeue.2008.02.015

a paradigms shift is in any case forced by technology scaling,
which leads to more transient and permanent failures of
signals, logic values, devices, and interconnections [5].

In multimedia designers take advantage of the signal pro-
cessing ability of people to convert the original source of
signals to lower quality packets of information, since this
usually provides acceptable performance to the end user,
reduces bandwidth and hardware costs [6]. An interesting
question is: if some signal processing device has a minor
hardware defect, will it still produce results that are good
enough for the end user? If so, they could also be sold rather
than be discarded [7].

The finite impulse response (FIR) filtering is one of
the important special purpose arithmetic operations widely
used for video rate digital filtering. Variety of approaches
for customizing implementation of FIR filters has been
pursued. The bit-plane (BP) architecture is semi-systolic
architecture with BP operations that provides regular con-
nections with extensive pipelining and high computational
throughput, which is, due to regularity, suitable for VLSI



Author's personal copy

V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405 399

implementations, either as a stand-alone module or as a part
of complex digital data path [8,9].

In this paper we will investigate possibilities of trading
off the acceptable computation correctness for hardware
size in FIR filter design based on BP array. The goal of this
paper is to develop a method for trading computational cor-
rectness for an additional chip area involved by FT imple-
mentation. This will be achieved by making only the most
significant bits of an output word of the BP array fault-
tolerant. By relaxing the requirement of 100% chip correct-
ness, and enabling the tradeoff, only the marked cells will
be implemented as FT cells.

We will start the development with acceptable margins of
error in the resulting word, and from the transitive closure
of the BP array we will obtain the error significance map.
The array cells out of the area marked by the error signif-
icance map could produce errors, but without a significant
influence on high order bits of the resulting word. Further
on, formal definitions of proposed terms will be given. A
rigorous mathematical path based on transitive closure that
generates error significance map for the BP array will be
proposed. The design tradeoff will be demonstrated through
FPGA implementation. The achieved area savings will be
presented as a function of a number of most significant fault-
tolerant bits. By introducing the concept of partially error-
tolerant (ET) BP array, one more degree of tradeoff freedom
for designers will be involved.

The paper is organized as follows: Section 2 gives a brief
overview of error tolerance; Section 3 is devoted to the ar-
chitecture of BP FIR filter; in Section 4 we give definitions
of basic terms; in Section 5 we propose the transitive clo-
sure of the BP array; Section 6 gives an example of an error
significance map development. In Section 7 implementation
results are presented, while in Section 8 concluding remarks
are given.

2. Error tolerance

In order to introduce a tradeoff between an acceptable
computation correctness and hardware size in FIR filter de-
sign based on a BP array, in this section we will give a brief
overview of error and FT.

Error detection is the ability to detect the presence of er-
rors, while error correction is the additional ability to recon-
struct the original, error-free data.

Error-free operation may be performed by a block that
can be reconfigured so that it outputs no errors. However,
its result is the degradation of one or more of the block
attributes. This is often called a graceful degradation [1].
Application of such a scheme to a system is usually referred
to as a fault tolerant system. FT is the property that enables a
system to continue operating properly in the event of failure
of some of its components [4].

Spare components in a FT scheme refer to the first fun-
damental characteristic of FT—not single point of failure.

Triple modular redundancy (TMR) is a fault tolerant form
of N-modular redundancy in which three systems perform
a process whose result is processed by a voting system to
produce a single output. This means that if one of the three
systems fails, the other two systems can correct and mask
the fault. If the voter fails, then the complete system fails.
However, in a good TMR system the voter is much more
reliable than the other TMR components [4].

Error tolerance is an alternative concept. Error tolerant
systems neither detect nor correct error. The circuit is said
to be an ET, with respect to an application, if (1) it contains
defects that cause internal and may cause external errors,
and (2) the system that incorporates this circuit produces
acceptable results [1,2,7].

There are passive and active measures of a system degra-
dation due to errors. Performance, capacity and through-
put are said to be passive measures, while error Rate,
Accumulation and Significance, known as RAS, are active
measures [1].

FT schemes, like TMR, are area consumptive. Thus, in
order to design a system that trades an acceptable compu-
tation correctness for a chip area consumed by redundant
cells, we propose combining TMR and ET.

The next section gives a brief review of the architecture
of a BP FIR filter that is taken as a basis for implementation
of BP FIR filter partially tolerant to errors.

3. Bit-plane FIR filter architecture

Output words {yi} of an FIR filter are computed as

yi = c0xi + c1xi−1 + · · · + ck−1xi−k+1, (1)

where c0, c1, . . . , ck−1 are coefficients while {xi} are input
words. Computation (1) can be realized in different man-
ners. When high performances are required systolic arrays
are frequently used. Semi-systolic array shares with systolic
arrays not only the desirable simplicity and regularity prop-
erties, but also pipelining and multiprocessing schemes of
operation.

The BP is a semi-systolic architecture with BP operations.
It provides regular connections with extensive pipelining
and high computational throughput [8,9]. A functional block
diagram of a BP array is shown in Fig. 1.

The following notation is adopted: m—coefficient word
length; kC—number of coefficients (c0, c1, . . . , ckC−1);

n—input word length; cj
i—bit of coefficient ci (with weight

2j ); ci ≡ cm−1
i cm−2

i · · · c0
i , where c0

i c
1
i . . . cm−1

i are the bits
of coefficient ci with weights 20, 21, . . . , 2m−1, respec-
tively; cj ≡ c

j

k−1c
j

k−2 . . . c
j

0 , where c
j

0 , c
j

1 , . . . , c
j

k−1, are the
bits with weight 2j of coefficients c0, c1, . . . , ck−1, respec-
tively; l0—the number of basic cells within one row of a

BP array; yj
i—the bit of output word yi with weight 2j .

There are m BP elements that form the array shown in
Fig. 1. Each BP (Fig. 1) is formed as a set of kC rows. A row



Author's personal copy

400 V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405

Fig. 1. The BP array for kC = 3 and m = 4.

performs the basic multiply-accumulate operation between
the intermediate result from the previous row and the product
of the input word and one coefficient bit. Delayed for one
clock cycle per row, the output word is available after kC ·m
clock cycles.

4. Error significance and partial
error-tolerance

In order to introduce a partial error-tolerance in a formal
way, let us define basic terms.

Let the architecture be represented by the data flow graph
G. Given a directed graph G=(V, E), where V={v1, . . . , vn}
is a finite set of vertices and E is a finite set of edges. An
edge e ∈ E is an ordered pair (vi, vj ), where vi, vj ∈ V and
an edge (vi, vj ) means that vertices vi and vj are connected.

Definition 1 (Error propagation). Let vi and vj be ver-
tices and let ei,j denote (vi, vj ) ∈ E. We define an error

propagation as the relation

� ⊆ V2, (vi, vj ) ∈ �.

The fact (vi, vj ) ∈ � we denote by �i,j , which holds if an
error which accrues within node vi causes an error within
an error-free node vj .

Lemma 1. Error propagation � is a transitive relation:

vi, vk, vj ∈ V, �i,k ∧ �k,j ⇒ �i,j .

Proof. If �i,k and �k,j hold, the error within node vk , caused
by error in node vi , will produce error in node vj , which
proves that nodes vi and vj are in relation �. �
Definition 2 (Error significance). Let Y = {y0, y1, . . . ,

yl0−1}, Y ⊆ V be the set of architecture’s output nodes.
We call the set M� ⊆ V error significance for the output
bit y�, iff

vi ∈ M� ⇔ (vi, y
�) ∈ �.

Error significance (Definition 2) marks the part of the
architecture that has to be error-free in order to have the
output result bit y� error-free.

Let two-dimensional ordering of an architecture be de-
fined as a function fo: V → N2, where N is a set of natural
numbers. We call the function fo the ordering function.

Definition 3 (Error significance map). We define error sig-
nificance map, M�=(m

�
p,q), for the output bit y�, as a matrix

with elements

m
�
p,q =

{
1, ∃ vi ∈ M�, fo(vi) = (p, q),

0, ∀ vi ∈ M�, fo(vi) �= (p, q).

Definition 4 (Partial error-tolerance). We define a degree
of partial error-tolerance (PET) of an architecture as a func-
tion from the set {0, 1, . . . , l0 −1} into the subset of V, such
that

PET(�) =
l0−1⋃

�=l0−�

M�.

Obviously, for � = 0 union in Definition 4 is an empty
set. Thus, PET(0) is the basic architecture without FT. In
respect of Definition 4, PET(l0) is a full fault tolerant (FFT)
architecture.

Having in mind that error propagation is a transitive rela-
tion (Lemma 1), the error significance map of the BP array
can be obtained from transitive closure, which gives infor-
mation about all paths within the array.

5. Transitive closure of the bit-plane array

In order to clarify the error significance map development
(Definition 3), we give a brief review of transitive closure
[10,11].



Author's personal copy

V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405 401

y1

y0

m l0

kC

ym-1

m

ymyp-1 yp-2 y p-3

m·kC

1

Fig. 2. Directed graph G for BP array.

The transitive closure of G is defined as the graph G∗ =
(V, E∗), where E∗ = {(vi, vj )| there is a path from vi to vj

in G}. The transitive closure of a graph is obtained by com-
puting the connectivity matrix A∗. The connectivity matrix
of G is a matrix A∗ = (a∗

i,j ) where a∗
i,j = 1 if there is a path

from vi to vj or i = j , and a∗
i,j = 0 otherwise [10,11].

In respect of Definition 2, error significance M� can
be obtained from the column of transitive closure A∗ that
corresponds to the output node y�. We define the error
significance map M�, according to Definition 3, for the BP
architecture using the ordering function fo, which maps the
elements a∗

i,j into m
�
p,q as follows:

p =
⌊

j

l0 + m

⌋
,

q = j mod (l0 + m), (2)

where i = cta and 0�j �(m · kC + 1) · (m + l0) − 1.
In order to develop a transitive closure for the BP array,

both the directed graph G for the array in Fig. 1, and the
connectivity matrix A∗ have to be obtained. In the BP array
shown in Fig. 1 there is a multiplication of a partial product
from each row within BP with factor 2, which is realized as
a shift for one position to the left between rows. Between
BPs there is a multiplication of a partial product by 1

2 , i.e.,
shift for one position to the right (Fig. 1), which introduces
slight irregularities between rows [8]. In order to develop
connectivity matrix for BP array in a general form, according
to the functional block diagram in Fig. 1, we obtained a
directed graph G shown in Fig. 2.

1

2

3

m·kC

m·kC+1

1

l0+m

2

3

4

Fig. 3. Directed graph: (a) GC that shows the connectivity of
columns of graph G, and (b) graph GR that shows connectivity
of rows.

Graph G in Fig. 2 consists of two types of nodes: nodes
that represent the BP cells in Fig. 1 (shaded nodes in Fig. 2),
and fictive nodes that are added in order to obtain a graph
with regular connections. In order to obtain connectivity
matrix of graph G we form a directed graph GC that shows
the connectivity of columns of graph G, and graph GR that
shows the connectivity of rows. Graphs GC and GR are
shown in Figs. 3(a), and (b), respectively.

Graph in Fig. 3(a) can be represented by connectivity
matrix as follows:

GC =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
0 1 1 . . . 0

...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎦

(l0+m)×(l0+m)

.

The dimension of matrix GC is (l0 +m)×(l0 +m), where
l0 + m is the number of columns of graph G (Fig. 2). The
elements gC

i,j of matrix GC are of the form:

gC
i,j =

{
1, j + 1� i�j,

0, other
(3)

that is, the elements on the main diagonal, and the elements
below the main diagonal are equal to 1. Transitive closure
A∗ can be obtained from graph GR (Fig. 3b), because each
node in graph GR has internal paths described with (3). The
connectivity matrix GR for the directed graph G in Fig. 2 is

GR =

⎡
⎢⎢⎢⎢⎣

0 GC 0 . . . 0
0 0 GC . . . 0

...

0 0 0 . . . GC

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

(m·kC+1)×(m·kC+1)

. (4)

Substituting GC in (4) with (3), we derive a connectivity
matrix for graph G from Fig. 2. The transitive closure A∗,



Author's personal copy

402 V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405

obtained using (4), is of the following form:

A∗ =

⎡
⎢⎢⎢⎢⎢⎣

0 GC G2
C . . . G

m·kC

C

0 0 GC . . . G
m·kC−1
C

...

0 0 0 . . . GC

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

, (5)

where Gk
C =Gk−1

C ·GC . In order to obtain matrices Gk
C from

transitive closure (5), we give the following lemma:

Lemma 2. Elements ((gC
i,j )

d) of the matrix Gd
C are of the

form

(gC
i,j )

d =
{

1, j + d � i�j

0, other
.

Proof. Lemma 2 can be proven using mathematical induc-
tion. Elements (gC

i,j )
1 of the matrix G1

C are of the form (3).

From (3) it follows directly that Lemma 2 stands for G2
C .

In order to show that Lemma 2 stands for Gd+1
C , we obtain

(gC
i,j )

d+1 as follows:

Gd+1
C = Gd

C · GC ⇒ (gC
i,j )

d+1 =
p∑

k=0

(gC
i,k)

d · gC
k,j

=
{

1, k + d � i�k
∧

j + 1�k�j

0, other

=
{

1, j + d + 1� i�j

0, other
,

which proves Lemma 2. �

Transitive closure A∗, given with (5), is a square matrix
with the dimension (m·kC+1)·(m+l0)×(m·kC+1)·(m+l0),
which shows the existence of the path between any two
nodes of the graph G (Fig. 2). Each column of the transitive
closure (5) that corresponds to an output node stands for
one error significance map M� of the BP array (Definition
3, Eq. (2)).

6. Example of partial error-tolerant bit-plane
array

With the aim to illustrate partial ET BP array according
to Definition 4, using the transitive closure of BP array (5)
and an error significance map M� (Definition 3) defined with
ordering function fo (2), we give an example of BP array
with kC = 2 coefficients, and coefficient length m = 2.

A directed graph G of BP array with kC = 2 coeffi-
cients, and coefficient length m = 2 is shown in Fig. 4(a).
A transitive closure of the graph is obtained according to
(5) and Lemma 2, and is shown in Fig. 4(b). The dimen-
sions of A∗ for the given example are 30 × 30 (enumerated

y0

y1

y5 y4 y3 y2

y0

y1

y5 y4 y3 y2

0 1 2 3 4 5

6 7 8 9 11

12 13 14 15 17

18 19 21 22 23

24 25
28

10

29
26 27

20

16

M4 M3 M2=

Fig. 4. Implementation example: (a) directed graph G of BP array
with kC =2 coefficients, and coefficient length m=2; (b) transitive
closure A∗; (c) error significance set M5; (d) error significance
map M5; (e) error significance maps M4, M3, and M2.

as 0, 1, . . . , 29), because there is a total of 30 nodes within
the graph G, including the output nodes y5, y4, y3, and y2.
Fig. 4(b) shows the upper-right corner of transitive closure
A∗ of the graph G in Fig. 4(a).

A transitive closure, given in Fig. 4(b), shows the exis-
tence of all paths within the graph. According to Definition
4, PET(1) can be obtained applying the FT scheme to the
cells marked by error significance map M5. The error sig-
nificance map M5 can be obtained, according to (2), from
transitive closure A∗ by rewriting the 24th column, which
corresponds to the output bit y5, Fig. 4(c). The nodes of
the graph from Fig. 4(a) are enumerated as 0, 1, . . . , 29, as
shown in Fig. 4(c). The elements of the 24th column of
A∗ are rewritten in the form of a matrix, according to (2),
and mapped to the nodes of graph G, which is shown in
Fig. 4(c). The nodes that have influence on the most signif-
icant bit of the result are shaded. The fictive nodes, because
of their nature, are not taken into consideration. Fig. 4(d)
shows the error significance map M5 of the BP array.



Author's personal copy

V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405 403

If acceptable results of BP array with kC = 2, and m = 2
are defined as Yacceptable = Ycorrect ± (25 − 1), then matrix
M5 in Fig. 4(d) shows the part of the BP array which must
be error-free in order for the BP architecture to produce
acceptable results.

Error significance maps M4, M3, and M2 are developed in
the same manner, and are shown in Fig. 4(e). For example,
according to the Definition 4, PET(2) can be obtained making
the cells, marked by M5 and M4, fault-tolerant.

7. Implementation results

In order to illustrate the tradeoffs enabled by partial em-
ployment of FT in the array, we choose a TMR as a FT
scheme to be involved in PET BP array implementation
(Definition 4).

For the sake of comparison, both BP architecture shown
in Fig. 1, and PET(�), 1��� l0, were described in VHDL
and implemented on Virtex4 FPGA. Design automation is
involved using the concept of generic parameters in VHDL
[12]. Function PET(�) (Definition 4) is implemented as a
custom-written VHDL function with � as a parameter which
controls whether the cell should be triplicated or not in the
moment of cell instantiation. Using the design automation
described in VHDL, the only parameter which has to be set,
regardless the array dimensions, is the number of error-free
high order bits in the output word (�).

We implemented three arrays with different parame-
ter sets. Parameter sets for the implemented arrays are
given in Table 1. Values for arrays widths (l0), and heights
(m · kC) are given in bold. The arrays differ in input word
width (n), which implies the different array widths and the

Table 1. Parameter sets for implemented arrays

kC m n l0 m · kC PET(�)

Arr1 4 8 8 16 32 0���16
Arr2 4 8 16 24 32 0���24
Arr3 4 8 24 32 32 0���32

Table 2. Number of basic cells required for array implementation, and actual gate count by FPGA implementation of different sizes of
arrays with � as parameter

� Arr1 Arr2 Arr3

No. of cells Impl. [kG] No. of cells Impl. [kG] No. of cells Impl. [kG]

32 / / / / 3072 82.0
24 / / 2304 61.6 2986 80.2
16 1536 41.4 2218 59.8 2730 74.7
8 1450 39.6 1962 54.3 2304 65.4
4 1344 37.3 1770 50.1 2048 59.9
2 1274 35.8 1658 47.1 1920 57.1
1 1236 34.9 1598 46.4 1856 55.7
0 512 19.4 768 28.6 1024 37.8

same array heights. All three arrays are implemented for
parameter � in the range 0��� l0.

Implementation results are given in Table 2. For each ar-
ray from Table 1 there are two columns within Table 2. The
left column stands for the number of basic cells obtained
analytically using the proposed method, while the right col-
umn stands for FPGA implementation in equivalent number
of kilogates (kG) [12].

Let us explain the analytically obtained results for Arr1.
If there are no ET bits in the output result (� = 0), then
the array is basic BP array (Fig. 1), and the number of the
required basic cells is equal to (m · kC) · l0 = 8 · 4 · 16 = 512.
If all bits of the output result are ET (� = l0 = 16),
FFT array, then all the basic cells have to be triplicated

Fig. 5. Saving of the silicon area required for array implementation
as the function of bits in the output word that are error-tolerant (�).



Author's personal copy

404 V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405

(512 · 3 = 1536, Table 2). For � = 1, according to Definition
4, 362 (out of 512) basic cells have to be triplicated, thus
362 · 3 + (512 − 362) · 1 = 1236 basic cells are required for
the array implementation (Table 2).

The number of basic cells, as well as the number of gates
required for the implementation of FFT arrays, are given
in bold in Table 2. These values are used for the calcula-
tion of achieved savings in the implementation of ET arrays
with � < l0, which are graphically shown in Fig. 5. For both
the analytically obtained and FPGA implementation results
savings are calculated as

Saving = FFT − PET(�)

FFT
· 100%. (6)

The analytically obtained savings are shown with dashed
lines, while FPGA implementation results are shown with
solid lines in Fig. 2. It can be noticed that FPGA implemen-
tation results are slightly shifted below the corresponding
theoretical results. This is due to the optimization effort of
a VHDL synthesis tool. It can also be noticed that for � = 0
all the theoretical results end with the saving equal to 66.7
(Fig. 5). According to (6), and having in mind that for TMR
PET(0) = FFT/3, “the saving”, if none of the result bits is
ET, is (FFT − FFT/3)/FFT · 100% = 66.7%. FPGA imple-
mentation results end with saving of 56%.

8. Concluding remarks

In this paper we proposed a concept of systems partially
tolerant to errors, and presented the design of a partially ET
BP array. Partial tolerance to errors is employed allowing
some of the cells to produce errors. The design of partially
ET BP FIR filter is facilitated by deriving the error signifi-
cance map for the BP array. Starting the development with
acceptable margins of error in the output result, we obtained
the error significance map from the transitive closure of the
BP array. The array cells out of the area marked by error sig-
nificance map could produce errors, but without any signif-
icant influence on the high-order bits of the resulting word.
Formal definitions of the proposed terms are given. A rigor-
ous mathematical path based on transitive closure that gen-
erates error significance map for the BP array is proposed.
The design tradeoff is demonstrated through an FPGA im-
plementation. The achieved area savings are presented as a
function of a number of most significant fault-tolerant bits.
By introducing the concept of partially ET BP array, design-
ers achieve one more degree of tradeoff freedom.

References

[1] Breuer M, Gupta S, Mark T. Defect and error tolerance in the
presence of massive numbers of defects. IEEE Trans Design
Test Comput 2004;21:216–27.

[2] Breuer M. Intelligible test techniques to support error-
tolerance. In: Proceedings on the 13th asian test symposium
(ATS 2004), IEEE Computer Society, 2004. 0–7695–
2235–1/04.

[3] Hsieh T-Y, Lee K-J, Breuer M. Reduction of detected
acceptable faults for yield improvement via error-tolerance.
In: Proceedings of the conference on design, automation and
test in Europe, Nice, France, 2007. p. 1599–1604.

[4] Johnson BW. Fault tolerance: the electrical engineering
handbook. CRC Press; 1993.

[5] International Technology Roadmap for Semiconductors:
Recommendations. 〈http://public.itrs.net/〉, 2001.

[6] Momcilovic S, Roma N, Sousa L. Adaptive motion estimation
algorithm for h.264/avc. IEEE 15th international conference
on digital signal processing (DSP) 2007, Cardiff, Wales, UK,
July 2007.

[7] Breuer M. Multimedia applications and imprecise comput-
ation. In: Proceedings on the eighth Euromicro conference on
digital system design, Euromicro, Porto, Portugal, September
2005.

[8] Noll T. Semi-systolic maximum rate transversal filters
with programmable coefficients. Workshop of systolic
architectures, Oxford, UK, 1986. p. 103–12.

[9] Ciric V, Milentijevic I. Configurable folded array
for FIR filtering. J Syst Architect 2007, in press,
doi:10.1016/j.sysarc.2007.05.001.

[10] Gries D, Schneider F. A logical approach to discrete math.
Berlin: Springer; 1993.

[11] Bawa S, Sharma G. A parallel transitive closure computation
algorithm for VLSI test generation. In: Proceedings PARA
2002, Espoo, Lecture Notes in Computer Science, vol. 2367,
2002. p. 243–52.

[12] Pedroni VA. Circuit design with VHDL. Massachusetts
Institute of Technology, Massachusetts: MIT Press; 2004.

Vladimir M. Ciric is a teaching and
research assistant at the Faculty of Elec-
tronic Engineering at the University
of Nis, Serbia. He received both B.S.
and M.Sc. degrees from the Faculty
of Electronic Engineering, University
of Nis, 2001 and 2005, respectively,
where he currently attends the Ph.D.
studies. His research interests include

computer architectures, fast arithmetic, fault-tolerant systems, dig-
ital image processing and video coding.

Jelena Kolokotronis is a Ph.D. student
at the Faculty of Electronic Engineering
at the University of Nis, Serbia. She re-
ceived graduated engineer diploma from
the Faculty of Electronic Engineering,
University of Nis in 2007. Her research
interests include computer architectures
and fault-tolerant systems.



Author's personal copy

V. Ćirić et al. / Int. J. Electron. Commun. (AEÜ) 63 (2009) 398–405 405

Ivan Z. Milentijevic is an Associate
Professor at the Faculty of Electronic
Engineering, University of Nis, Ser-
bia. He received B.S. in Electrical
engineering and M.Sc. and Ph.D. de-
gree in Computer Science from the
Faculty of Electronic Engineering in
1989, 1994 and 1998, respectively. His

research interests include computer architecture, parallel process-
ing, fast and fault tolerant arithmetic, digital signal processing and
computer science education. He published 20 journal papers and
coordinated and managed 2 international projects. Currently he is
head of the Computer Science Department at the University of Nis.


