

2020 Zooming Innovation in Consumer Technologies
Conference (ZINC)

Online, 26-27 May 2020

ISBN: 978-1-7281-8259-9

IEEE Catalog Number: CFP20ZIN-ART

www.GoZinc.org

The Concept of Consumer IP Address Preservation

Behind the Load Balancer

Vladimir Ciric

University of Nis, Faculty

of Electronic Engineering

Nis, Serbia

vladimir.ciric@elfak.ni.ac.

rs

Nikola Vidojkovic

University of Nis, Faculty

of Electronic Engineering

Nis, Serbia

nikola@vidojkovic.in.rs

Nadja Gavrilovic

University of Nis, Faculty

of Electronic Engineering

Nis, Serbia

nadja.gavrilovic@elfak.ni.

ac.rs

Ivan Milentijevic

University of Nis, Faculty

of Electronic Engineering

Nis, Serbia

ivan.milentijevic@elfak.ni.
ac.rs

Abstract— With the trend of moving all kind of services

online, the number of globally connected services and,

generally, devices had enormous growth in the last decade. In

such an environment, a security becomes a big challenge.

There are many network security architectures. However, most

of them make a target service to suffer and struggle to

maintain the functionalities behind all additional security

layers. The first functionalities that are often lost are

functionalities based on knowing the original consumer IP

address (authentication, geo-location of consumers, etc). The

preservation of the original IP addresses is a difficult task and

requires advanced routing techniques at the service provider

premises. In this paper the concept of advanced routing and

network address translation which preserves the original

consumer IP address is discussed. The concept involves load

balancer, network intrusion detection, and proxy. The concept

and the routing techniques will be described in detail. The

results of the system implementation and evaluation will be

given.

Keywords— network security architecture, proxy service,

routing techniques, intrusion detection systems

I. INTRODUCTION

The internet has grown rapidly in the last decade. Due to
the increasing availability, affordability, and proficiency of
network enabled devices, the number of globally connected
hosts is steadily increasing [1]. With the large number of
devices, services, and users the security becomes a challenge.
The Internet of Things (IoT), which tends to connect all
kinds of devices and sensors, often not well-tested because of
time-to-market reasons, make the security even worse [2].

There are a lot of network security architectures and
approaches which tend to lower the security risks and
introduce additional network control and monitoring
functions [3],[4]. Each security architecture provides specific
access control when crossing network security perimeter,
which is often deployed at the network boundary. Current
designs for publically available services usually rely on
packet filtering, proxy technology, and intrusion detection
[5],[6]. With introduction of load balancers into the
architecture, situation becomes even more complicated [7].
The first feature that is often lost is a transparency.

Transparency, in a broad sense, is a feature that makes
the end devices in the communication, i.e. client and server,
unaware of the existence of any additional layer [8]. In a
direct communication, the destination end device (the server)
receives the Layer-3 packet with the original IP address of
the sender (the client). With robust network security
perimeter, the transparency feature becomes more difficult to
retain. Proxy servers and load balancers often act as
intermediate devices, replacing the source IP address with

their own while intercepting the packet for inspection. For
the consumer they become “end device” that provide the
service [8]. In such a scenario, the destination server loses
the information about the original source of the packet,
which can lead to lose of some service functionalities.

This problem is often addressed by the implementation of
a Layer-2 bridge with extensions for Layer-3 security
services [9]. Solutions that address the problem at Layer-3
give more flexibility, but they require source IP address
spoofing at the destination. With source IP address spoofing
at the security premises, routing becomes a challenge.

In this paper we present the concept of advanced routing
and network address translation which preserves the
consumer IP address, while the consumer is accessing the
service through load balancer, proxy and the network
intrusion detection system. The architecture and the routing
techniques will be described in detail. In order to implement
the routing that will support the communication we will
utilize the application containerization. All used components
will be described in detail. The results of system
implementation and evaluation will be given.

This paper is organized as follows. In Section 2 we give a
brief overview of proxy techniques, proxy protocol and
routing techniques for IP address spoofing. Section 3 is the
main section where we present and discuss the security
architecture. In Section 4 the implementation results will be
presented, while in Section 5 we give concluding remarks.

II. PROXY SERVICES AND LOAD BALANCING

A. Proxy services

In computer networking, a proxy is an entity that acts as
an intermediary for requests from clients seeking resources
from servers. Regarding their relative distance from the
client there are forward and reverse proxy servers. The
forward proxy is close to the client, while the reverse is close
to the server. Regarding the awareness of the client of proxy
existence, there are classical and transparent proxy servers
[8]. Classical proxy server usually has two ends: the server
and the client end. The server end acts as a server exposing
same or modified communication protocol as a destination
server. The client is aware of the existence of the proxy, and
it connects to the proxy directly (Fig. 1a, message 1). The
main problem with classical proxy is how the client delivers
the information about the final destination to the proxy
server. There are several approaches, but the simplest one
(usually used for reverse proxies) is to configure the proxy in
advance to be dedicated to one server only (Fig. 1a, message
2). The proxy connects to the final destination and fetches
the data for the client, passing it back to the client (Fig. 1a).

978-1-7281-8259-9/20/$31.00 ©2020 IEEE 58

In the transparent scenario the client tries to contact the
final destination directly, unaware of the existence of the
proxy (Fig. 1b, message 1). The proxy usually has two
interfaces and acts as a regular router on the way between the
client and the server. However, when the regular request is
passing through the proxy on its way, the proxy intercepts it
based on the destination address and port, and neither
forwards it nor drops it (Fig 1b). The proxy fetches the
packet, and checks the source permissions for accessing the
final destination. Then, the proxy contacts the destination
server on behalf of the client, like in the classical proxy
scenario [8]. Connections that go through a transparent proxy
are actually made of two complete sessions: a session
between the client and the IP address of the destination
server (this session is "intercepted" by the proxy), and a
session between the proxy and the server (Fig. 1b).

Fig. 1. The proxy servers operation: a) classical proxy, b) transparent
proxy

Like classical proxies, transparent proxies hide the client
IP address from the servers, since from the server perspective
the session is initiated by the proxy [8].

B. Load balancing

Load balancing refers to the process of distributing a set
of tasks over a set of resources, with the aim of making their
overall processing more efficient. There are several
approaches to load balancing [10]. Typical Layer-4 load
balancer that acts as a service broker is shown in Fig. 2.

Fig. 2. Communication through load balancer

 When the Layer 4 load balancer receives a request and
makes load balancing decision, it changes the destination IP
address from its own (Fig. 2, message 1) to that of the
content server it has chosen (Fig. 2, message 2). Similarly,
before forwarding server responses to clients, the load
balancer changes the source address recorded in the packet
header from the server’s IP address to its own [10]. Load
balancers can use different methods to choose the content
server that will serve the request. These include the round-
robin, least connections, etc.

From both the client’s and the server’s angle, the load
balancer acts as a classical proxy, with predefined destination
address (addresses). Eventually, it hides the source IP
address from the server.

C. The Proxy protocol and IP address spoofing

The problem of source IP address preservation at the
destination server can be addressed in several different ways.
HTTP protocol defines the “Forwarded” extension, which
replaces the ‘X-Forwarded-For” header that carries
information about the original source address. However, this
technique requires knowledge of the underlying protocol to
be implemented in intermediaries, and has specific
implementation for each protocol. SMTP, for example, has
XCLIENT protocol extension, etc [12].

In order to deal with the problem that each application
layer protocol need to have its own extension, HAProxy
published the Proxy Protocol (PP) [12]. The PP defines
custom text or binary headers to carry the information about
the source in the standard way through the cascade of proxy
servers or to the final destination server. The idea behind the
PP is simple: a packet carrying PP header precedes the
regular (HTTP, SMTP, etc.) protocol communication (Fig.
3), and it is sent to the same port, to the same service as the
main protocol packets. If the server is “PP ready”, it will
collect the information and fill the missing server structures:
INET protocol, original source and destination IP addresses
and ports. If the software is not “PP ready”, the well-known
protocols like HTTP, SMTP, FTP, etc., will cause a sort of
“bad request” message, but the protocol itself will continue
without the stall, with the drawback that the destination will
not have the information about the source [12].

Fig. 3. HAproxy protocol communication sequence

In order to preserve the original source IP address at the
destination server, the IP address in the message 3 from Fig.
3 should be spoofed. This is shown in Fig. 4. The spoofer
component does that by accepting the proxy request with the
PP header, and then spoofs the source information from the
regular IP packet header before sending it to the destination
server (Fig. 4).

Fig. 4. HAproxy protocol communication sequence

From the server’s perspective, the communication shown
in Fig. 4 is exactly the same as in the case of a direct
communication. However, this scenario requires the
implementation of an advanced routing, because the reply
from the server contains the destination address of the
original source (Fig. 4, message 5), but it is actually destined
for IP spoofer.

III. THE DESIGN OF NETWORK SECURITY ARCHITECTURE

In order to implement the routing that will support the
communication shown in Fig. 4, we utilized the application
containerization. The containers are primarily used to
encapsulate the IP spoofer close to the server, so the return
packet from the server (Fig. 4, message 5) can be easily
intercepted within the container. The problem with the
interception of the mentioned packet lies in the fact that the

59

packet destination address in message 5 from Fig. 4 is
useless, because “the true” destination is the IP spoofer
within the container.

The concept of consumer IP address preservation behind
the load balancer is shown in Fig. 5. There are two
application containers. The first container (LXC container 1)
contains the load balancer and the network intrusion
detection system. It has two network interfaces ifc1-1 and ifc1-

2 (Fig. 5). The second container (LXC container 2) contains
IP spoofer and the server, as well as iptables Linux module
for advanced routing. The second container has only one
entry point, i.e. ifc2.

Fig. 5. The security perimiter architecture

From the client’s perspective, the service is seen through
the IP address of the load balancer, i.e. the address of the
interface ifc1-1 (Fig. 5, message 1). The load balancer should
have the Proxy protocol support enabled. It should listen on
the interface ifc1-1, and send requests through interface ifc1-2
(this depends on the IP address scheme). From the load
balancer’s perspective the container 2 abstracts the server,
thus it forwards the request to the IP address defined by the
ifc2 in the same manner as it is shown in Fig. 4 (Fig. 5,
messages 2 and 3). In addition, container 1 consists of the
network intrusion detection which listens for the packets on
the interface ifc1-1(Fig. 5, message 4) and logs the intrusion
attempts.

The second container implements advanced routing using
Linux iptables. At the entry point of container 2, the spoofer
accepts the proxy protocol header and the client request (Fig.
5). It prepares the message 5 from Fig. 5, but additionally it
marks the packet, in order to be recognizable by the other
subsystems.

The iptables from Fig. 5 enables advanced routing based
on the packet marks. The code snippet from Fig. 6 shows the
setup of the iptables that enforces routing table 100 for the
marked packets, which routes these packets to loopback
interface instead of routing them to the publically available
interface. This applies to both IPv4 and IPv6.

Fig. 6. The code snippet that enables the adv. routing in the container 2

Based on the routing rules involved in Fig. 6, the packets
marked with “123” will be routed to the loopback interface
(Fig. 5). Thus, after the preparation of the message 5 from
Fig. 5, the spoofer sends it to the loopback interface with the
source IP address equal to the address of the client, and the
destination IP address of the server. The server is setup to
listen for the packets arriving over the loopback interface,
thus it receives the packet. From the servers perspective it
receives the real IP address of the source where it should be
– in the header of the IP packet, and replays as in the case of
the direct communication (Fig. 5, message 6). The iptables
again reroutes the packet to the loopback interface, where it
is recognized by the mark “123” and picked up by the
spoofer. It replies to the load balancer, which does the
network translation again and forwards the response to the
client.

The containers 1 and 2 from Fig. 5 can be implemented
either on single or separate nodes. In order to fully utilize the
load balancer, the container 2 can be replicated many times.

IV. IMPLEMENTATION AND EVALUATION RESULTS

For the sake of illustration and basic performance
evaluation, the both containers from Fig. 5 are implemented
on the server with i5-2410 3.1 GHz CPU, 6 GB 1333 MHz
RAM, and SSD hard disk. Debian 9 and Proxmox
virtualization environment were used to implement LXC
containers, while on the container level we used CentOS 7.6.

For the load balancer Linux nginx tool v.1.14.2 is chosen.
The well-known Snort IDS v2.9.12 is implemented as a
network intrusion detection component, with the setup for
malicious attempts logging. The server from Fig. 5 is Apache
web server v.2.4.6. For the evaluation, the system is made
publicly available and the online WebPageTest tool was used
for measuring the response times (Fig. 7).

In order to be able to compare the results and estimate the
overhead that the architecture from Fig. 5 introduces, we
implemented the web server as a stand-alone server using the
same versions of the components, as well. This
communication is similar to scenario shown in Fig. 1a, but
instead of a real proxy, we had static NAT address
translation.

In both cases we used three different page sizes with
different number of objects. We varied the page size from 2
to 1.000kB. Table 1 shows the results. For each measured
parameter, two columns are given in Table 1 and denoted as

60

A and B. The columns denoted with A stand for the
architecture shown in Fig. 5, while the columns denoted with
B stand for the direct client server communication.

Fig. 7. WebPageTest evaluation of the system response times

TABLE I. SYSTEM RESPONSE TIMES: A) ARCHITECTURE FROM FIG. 5,
B) THE STAND-ALONE WEB SERVER

The

page

size

[kB]

The

no.

of

reque

sts

DNS

time

[ms]

Initial

connection

[ms]

The

first

byte

[ns]

Total transfer

time [ns]

A) B) A) B) A) B) A) B)

2 2 35 30 64 65 71 70 243 200

100 3 31 31 64 64 74 74 497 464

1.000 5 30 34 66 66 71 70 2.004 1.998

From Table 1 it can be seen that no significant difference
in the page load time exists in the case of the web server
implementation. Furthermore, it can be concluded that for
the smaller number of requests, the total page transfer time is
longer. The difference is getting smaller as the number of the
requests rises due to the route caching which is performed
for the following packets.

The impact of the proposed concept to cyber security is
twofold. Firstly, the architecture from Fig. 5 includes the
common components which are used to lower the security
risk in modern architectures. It provides the network
intrusion detection (Fig. 5) which is used to actively monitor
the traffic for possible intrusions. Also, it doesn’t directly
expose the IP addresses of the actual servers, thus it

implicitly protects them. Secondly, the architecture from Fig.
5 preserves the IP address of the actual client, thus the server
can perform all the regular authentication methods that rely
on the client’s IP address.

V. CONCLUSION

In this paper the concept of advanced routing and network
address translation which preserves the original consumer IP
address is discussed, while the consumer is accessing the service
through load balancer, network intrusion detection, and proxy. The
concept and the routing techniques are described in detail. The
results of the system implementation and evaluation are given. In
order to implement the routing that will support the communication
we utilized the application containerization. The results of the
system implementation and evaluation were given. The results show
that no significant time overhead was introduced regarding the web
page loading times due to the involvement of robust security
perimeter.

ACKNOWLEDGMENT

This work was supported by the Serbian Ministry of Education,
Science and Technological Development [grant number TR32012].

REFERENCES

[1] Tange, Koen, Michele De Donno, Xenofon Fafoutis, and Nicola
Dragoni. "Towards a systematic survey of industrial IoT security
requirements: research method and quantitative analysis." In
Proceedings of the Workshop on Fog Computing and the IoT, pp. 56-
63. 2019.

[2] Radanliev, Petar, Dave De Roure, Stacy Cannady, Rafael Mantilla
Montalvo, Razvan Nicolescu, and Michael Huth. "Economic impact
of IoT cyber risk-analysing past and present to predict the future
developments in IoT risk analysis and IoT cyber insurance." (2018):
3-9.

[3] Varadharajan, Vijay, Kallol Karmakar, Uday Tupakula, and Michael
Hitchens. "A policy-based security architecture for software-defined
networks." IEEE Transactions on Information Forensics and Security
14, no. 4 (2018): 897-912.

[4] Zhou, Liang, and Han-Chieh Chao. "Multimedia traffic security
architecture for the internet of things." IEEE Network 25, no. 3
(2011): 35-40.

[5] Kumar, Sailesh. "Survey of current network intrusion detection
techniques." Washington Univ. in St. Louis (2007): 1-18.

[6] Ntuli, Nonhlanhla, and Adnan Abu-Mahfouz. "A simple security
architecture for smart water management system." Procedia Computer
Science 83 (2016): 1164-1169.

[7] Islam, Shafinaz. "Network Load Balancing Methods: Experimental
Comparisons and Improvement." arXiv preprint arXiv:1710.06957
(2017).

[8] Chatel, M. "Classical versus transparent IP proxies." Network
Working Group Request for Comments,(Mar. 1996) (1996): 1-35.

[9] Keromytis, Angelos D., and Jason L. Wright. "Transparent Network
Security Policy Enforcement." In USENIX Annual Technical
Conference, FREENIX Track, pp. 215-226. 2000.

[10] Cardellini, Valeria, Michele Colajanni, and Philip S. Yu. "Dynamic
load balancing on web-server systems." IEEE Internet computing 3,
no. 3 (1999): 28-39.

[11] Prasetijo, Agung B., Eko D. Widianto, and Ersya T. Hidayatullah.
"Performance comparisons of web server load balancing algorithms
on HAProxy and Heartbeat." In 2016 3rd International Conference on
Information Technology, Computer, and Electrical Engineering
(ICITACEE), pp. 393-396. IEEE, 2016.

[12] HAProxy, “The Proxy protocol Versions 1 & 2”, March 2020. Link:
http://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

61

