
Abstract Growing influence of computer networks and
Internet to everyday life, with more and more devices connected
to global network, opens a new possibilities for malicious
activities, while exposing the users to attacks even more,
including their data and privacy. Due to the amount of data that
need to be processed in order to detect such activities, intrusion
detection and prevention systems become a challenging topic.
The goal of this paper is the implementation of Intrusion
Detection System (IDS) on the Apache Hadoop platform. The
Hadoop implementation will enable task parallelization on multi-
core processors. The proposed system will be evaluated and
compared with popular Snort IDS on a two-core i3 processor.
The obtained results show that proposed Hadoop based IDS is
about 25% faster then the Snort IDS.

Index Terms Network Security, IDS Systems, Hadoop
MapReduce, Myers algorithm.

I. INTRODUCTION

 In the era of Internet of Things (IoT), where the goal, in a
nutshell, is to connect every device and sensor that can be
connected to the global network and build an application
around them, the security of the devices and data that they
produce becomes one of the key requirements [1]. According

connected
devices installed worldwide in 2017 is about 23 billion, and it
is expected that the number will reach 75 billion in 2025 [2].

Unfortunately, software security testing is a commonly
misunderstood and underestimated task [3]. Dynamic market
often put tough timing requirements and deadlines that
influence the development to reuse untested or poorly tested
libraries and components, leaving potential doors open for

ies are not a guaranty that
the exploit will not be found in the future [4]. In order to
protect the system against threats in such an environment, a
robust security architecture should be built.

Legacy security architectures usually were limited to
firewall as a key component that can permit or deny the traffic

Vladimir is with the Faculty of Electronic

Engineering, Aleksandra Medvedeva 14, 18000 , Serbia (e-mail:
Vladimir.ciric@ elfak.ni.ac.rs).

Dusan Cvetkovi is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 -mail:
cvetkovicdusan@outlook.com).

Ivan Milentijevi is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 -mail:
ivan.milentijevic@ elfak.ni.ac.rs).

to or from specific host or protocol [5]. However, todays
exploits and attacks are far more sophisticated, and require
deep network packet analysis. Examples include various
distributed DoS attacks, zombie networks, etc.

Deep packet analysis can be performed by Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems
(IPS), which are commonly used components in the security
architectures today [6]. An intrusion detection system (IDS) is
a device or software application on network boundary that
transparently monitors network traffic for malicious activity
or policy violations. Any malicious activity detected by IDS is
typically reported to the network administrator and recorded
into log files. The IPS, in addition to IDS, is proactive and
acts to prevent the malicious activity, for example, by
adjusting the firewall rules.

Taking into the account the growing number of devices and
typical bandwidths on the network boundaries, the amount of
data that need to be analyzed for malicious signatures
becomes challenging. Several researchers proposed IDS
implementations with aim to speed up network packet
analysis [7-12]. Different approaches to task and data
parallelism were exploited [9,10]. In [11] authors proposed
GPU accelerated implementation of IDS. Some of the
implementations aim to accelerate the pattern matching
operation through parallelization using Phoenix++ and
MAPCG MapReduce frameworks for multi-core CPUs [12].

The goal of this paper is design and implementation of IDS
system using Apache Hadoop MapReduce framework. The
Apache Hadoop is a framework for development of
distributed applications, which offers both task parallelization
on multi-core processors, and distributed application
execution. The IDS will be implemented using Myers pattern-
search algorithm as a core for signature-based packet analysis.
The design of MapReduce IDS workflow will be described in
details. The proposed system will be evaluated and compared
with popular Snort IDS on a two-core i3 processor. The
obtained results will show that proposed Hadoop based IDS is
about 25% faster then the Snort IDS.

The paper is organized as follows. Section 2 gives a brief
introduction to IDS and Myers algorithm. Section 3 is devoted
to the MapReduce framework, as a basis for the proposed
Apache Hadoop implementation of IDS. Section 4 is the main
section and presents the design of the IDS workflow on the
Hadoop framework. Section 5 is devoted to the system
evaluation, while in Section 6 concluding remarks are given.

Design and Implementation of Network
Intrusion Detection System on the Apache

Hadoop Platform
Vladimir Ciric, Dusan Cvetkovic, Ivan Milentijevic

II. CLASSIFICATION OF IDS AND THE ROLE OF MYERS

ALGORITHM

IDSs are classified, based on their network packet analysis
model, into two categories: pattern (or signature) matching
and anomaly detection [6,12,13]. The signature matching IDS
monitors the network activity for a known misuse pattern that
was previously identified as a malicious attempt [7,8]. The
anomaly-detection IDS makes the decision based on a profile
of a normal network behavior. The network is
often constructed using statistical or machine learning
techniques [13,14].

Signature matching IDSs utilize a database with malicious
signatures that are prepared in advance. This leads to fast and
reliable pattern matching operation, commonly used in the
majority of commercial systems [14]. However, anomaly-
detection based IDSs are able to detect new attacks that have
not been seen before. The drawback of this category of IDSs
is the occurrence of false positives.

Snort is a widely used open-source signature matching IDS
[12]. It has a large and publically available database of rules,
which covers known attacks, and it grows with each
discovered attack. Many commercial and experimental
systems use the snort rule syntax, due to its flexibility, and
ease of new rules creation. Fig. 1 shows the basic elements of

Fig. 1. Example of Snort rule: left side of the rule contains network related

such as pattern, alert message, etc.

Any signature based IDS checks the presence of a
malicious signature in the incoming packet sequence and act
as instructed by the corresponding rule. The pattern matching
algorithm must be fast enough in order to meet the increase in
both the number of signatures and the link speed. Signature
based IDS systems, publically available or experimental,
usually differ in the pattern search algorithm, on one hand,
and the implementation technology, on the other hand
[8,9,10,11,12]. Since the release of version 2.0 in 2002, Snort
has utilized a high-speed multi-pattern search engine [15].
Before Snort 2.8.0, the default string-pattern matching
algorithm was ACF, whose speed of packet processing was
faster than AC-BNFA that is currently used, but it consumed
more memory [15].

In this paper we explore Myers pattern search algorithm
with rules in Snort syntax, as a core for the proposed IDS. The
Myers algorithm is an approximate string matching algorithm,
which uses the Levenshtein distance to compute the matches
[12]. The algorithm matches a large text t of length n with a
short pattern p of length m allowing up to k differences, where
k is a chosen threshold error. The example of the approximate
string matching is shown in Fig. 2. The matrix in Fig. 2 is
formed in three steps:

1) Fill the text t into the first row, and the pattern p into the
first column. The matrix will be of the order n x m.
2) Fill the second row with zeros, and the second column

m.
3) Calculate all the values v in the matrix using the
formula:

jiji

ji

ji

ji

v

v

v

v

,1,1

1,

,1

, 1

1

min ,

where 0, ji if the characters in i-th row and j-th column

are the same, and 1, ji otherwise.

I C E T R A N P A L I C T R A N
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
T 2 2 1 0 1 2 2 2 2 2 2 2 1 2 2 2
R 3 3 2 1 0 1 2 3 3 3 3 3 2 1 2 3
A 4 4 3 2 1 0 1 2 3 4 4 4 3 2 1 2
N 5 5 4 3 2 1 0 1 2 3 4 5 4 3 2 1

Fig. 2. Example of approximate string matching

The distance of the search pattern from the particular
positions in the text can be seen in the last row. As the
example in Fig. 2 shows, there is one exact match (value 0).
However, there are few positions with the distance 1, etc.

The Myers algorithm encodes the columns by integer
numbers, and calculates the i-th column in iterative manner
using the value of the i-1 th column and integer arithmetic.
The Myers algorithm is given in Fig. 3 [12].

Fig. 3. Myers pattern searching algorithm

As it is shown in Fig. 3, the Myers algorithm has a
preprocessing phase, followed by the search phase. In the
preprocessing phase it generates a bitmasks B, which are used
later on in the pattern search phase. One bitmap is generated
for each character C from the alphabet (text and pattern). The
generated bitmap B is equal to 0 if the character C is not in the
search pattern (Fig. 3).

III. HADOOP MAPREDUCE MODEL

In this section we give a brief introduction to the Apache
Hadoop platform and MapReduce model, as a basis for IDS
implementation.

The Apache Hadoop is a framework for distributed
processing of large data sets on clusters of computers using
MapReduce programming model, where each computer, or so

node offers local computation and storage [16]. There
are two main components of Hadoop system: Hadoop
Distributed File System (HDFS), used for distributed data
storage, and MapReduce computing framework for data
manipulation. The HDFS is a layer above existing file system
of every node in cluster, and Hadoop uses its blocks to store
input files or parts of them. Large files are split into a group of
smaller parts called blocks (default block size is 64MB) [16].
Typical Hadoop execution has 4 parts: transferring input data
from Client host to HDFS, processing data using MapReduce
framework on the slave nodes, storing results by Master node
on HDFS, and reading data by Client host from HDFS.

In essence, MapReduce technique consists of two
transformations that can be applied many times on input files:
Map transformation, and Reduce transformation. During the
Map transformation, every Map task processes a small part of
the input file (input split) and passes the results to the Reduce
tasks (Fig. 4). After that, during the Reduce transformation,
Reduce tasks collect the intermediate results of Map tasks and
combine them in order to get the output.

During the execution of the Mapper, the Mapper calls a
Map function, which performs required computations.
Precisely, Map function transforms input dataset into the set
of output values (key, value). After that, intermediate data
with the same key are grouped and passed to the same Reduce
function. At the end, Reduce function summarizes all data
with the same key in order to get the final result (Fig. 4).

Fig. 4. The MapReduce execution

IV. DESIGN OF MAPREDUCE SUITABLE IDS

The workflow of the proposed IDS is shown in Fig. 5. The
workflow has three phases for network traffic fetching and
data format preparation (phases 1, 2 and 3 in Fig. 5), and one

. The
framework is designed in such manner to encapsulate the
pattern search into the phase that can be parallelized using
Hadoop framework from Fig. 4, and to prepare and provide
the data in required format for the central phase.

Fig. 5. The workflow of the proposed IDS

The intrusion detection starts with network packet fetching
(phase 1 in Fig. 5). For fetching the network packets we use
libpcap library. Other tools like Wireshark can be used, too.
The output of this phase is binary data collected from the
network in raw format. In order to simplify manipulation, the
raw data are decoded, and the most significant information,
such as IP addresses, ports and content, are extracted and
stored as strings. For this purpose we use tshark Linux
command line tool. The example of tshark tool usage is:

A part of the output of the tshark tool is shown in Fig. 6.
Each line in Fig. 6 contains the information from one fetched
network packet.

Fig. 6. The output of the tshark tool

The output can be filtered in order to remove the traffic
which is not of the interest for IDS, such as local traffic, etc.
(phase 3 in Fig. 5). Filtered or not, the output from Fig. 6 is
well prepared for the pattern search phase (phase 4 in Fig. 5).

The pattern search is performed on the Apache Hadoop.
The input data from Fig. 6 is divided in input splits and fed
into Hadoop Map tasks, which are executed in parallel. Each
mapper from Fig. 4 executes the Myers algorithm from Fig. 3
on its input split. There are no data dependencies, thus the
mappers can be executed in parallel.

It should be mentioned that the preprocessing phase of
Myers algorithm is performed only once for all Snort rules,

and the bitmaps are stored for the further use.
A mapper from Fig. 4 reads one line of input data at the

time, i.e. one network packet, and executes the Myers
algorithm. If a Snort rule pattern is found, the mapper emits
<key,value> pair, where the key stands for a network flow
attack identification, while the value is constant 1. The key is
in the format

 <sid>,<SourceIP>,<SourcePort>,<DestIP>,<DestPort>,
where sid is Snort rule ID, and the rest of the fields are the
identifications of the network flow.

Having the same key, the results from the same malicious
flow go to the same reducer (Fig. 4), which counts the
malicious packets on the flow and outputs the result.

V. IMPLEMENTATION AND EVALUATION RESULTS

The proposed IDS is evaluated using 1GB of fetch network
data containing 2.966.346 packets. The data is obtained by
merging the data from the network forensics site
asecuritysite.com and the data obtained in our lab
environment. The complete set of input data contained 400
malicious packets of the following types: Heartbleed attack
(sid=100000), three types of WonnaCry attacks (sid =
2024217, sid = 2024218, sid=2024220), and two malicious
flows with the same FTP brute force attack (sid=491) [4]. The
rules are obtained from the network forensics site
asecuritysite.com, too.

The evaluation is performed on single processor PC with
two-core i3 6006U CPU and 8GB of RAM. The results are
given in Table 1. The both systems were evaluated with the
same input data set. We used Apache Hadoop 2.9.0 and Snort
2.9.7.0 GRE (build 149). The file sizes in Table 1 differ due to
the fact that the Snort uses the raw data in the binary format
as an input, while the proposed system first decodes the
packets into a text format.

TABLE I
EVALUATION RESULTS

IDS

The input data
Processing

timeSize in
GB

of
malicious
packets

The Snort 1 400 2 min
The proposed
Hadoop IDS

1.6 400
1 min 34
sec

From Table 1, it can be seen that the proposed Hadoop IDS
is faster than the Snort for about 25%. The gain in the speed
obtain by involving both processor cores in this case is
compensated by the usage of robust framework and by data
preparation.

VI. CONCLUSION

In this paper the implementation of Intrusion Detection
System (IDS) on Apache Hadoop platform is proposed. The

design and the implementation of the proposed IDS are given
in details. Using the Hadoop platform we utilized
parallelization on multi-core processors and speedup the
system. The proposed system is evaluated and compared with
popular Snort IDS on a two-core i3 processor. The evaluation
results show that the proposed Hadoop IDS is about 25%
faster than Snort IDS.

ACKNOWLEDGMENT

The research was supported in part by the Serbian Ministry
of Education, Science and Technological Development
(Project TR32012).

REFERENCES

[1] Li Da Xu, Wu He, and Shancang Li, Internet of things in industries: A
survey. IEEE Transactions on industrial informatics, 10(4), 2014,
pp.2233-2243.

[2] Internet of Things connected devices installed base worldwide
Statistics Portal, URL: www.statista.com/statistics/471264/, Accessed in
2018.

[3] Potter, Bruce, and Gary McGraw. "Software security testing." IEEE
Security & Privacy 2.5 (2004): 81-85.

[4] Tsoutsos, Nektarios Georgios, and Michail Maniatakos. "Trust No One:
Thwarting" heartbleed" Attacks Using Privacy-Preserving
Computation." VLSI (ISVLSI), 2014 IEEE Computer Society Annual
Symposium on. IEEE, 2014.

[5] Hunt, Ray. "Internet/Intranet firewall security policy, architecture and
transaction services." Computer Communications 21.13 (1998): 1107-
1123.

[6] Endorf, Carl, Eugene Schultz, and Jim Mellander. Intrusion detection &
prevention. Emeryville, CA: McGraw-Hill/Osborne, 2004.

[7] Aldwairi, Monther, and Duaa Alansari. "Exscind: Fast pattern matching
for intrusion detection using exclusion and inclusion filters." Next
Generation Web Services Practices (NWeSP), 2011 7th International
Conference on. IEEE, 2011.

[8] Xu, Dongliang, Hongli Zhang, and Yujian Fan. "The GPU-based high-
performance pattern-matching algorithm for intrusion detection."
Journal of computational information systems 9.10 (2013): 3791-3800.

[9] Kharbutli, Mazen, Monther Aldwairi, and Abdullah Mughrabi.
"Function and data parallelization of Wu-Manber pattern matching for
intrusion detection systems." Network Protocols and Algorithms 4.3
(2012): 46-61.

[10] Su, Xiong, Zhenzhou Ji, and Xiaoyang Lian. "A Parallel AC Algorithm
Based on SPMD for Intrusion Detection System." Proceedings of the
2nd International Conference on Computer Science and Electronics
Engineering. Atlantis Press, 2013.

[11] Vasiliadis, Giorgos, et al. "Gnort: High performance network intrusion
detection using graphics processors." International Workshop on Recent
Advances in Intrusion Detection. Springer, Berlin, Heidelberg, 2008.

[12] Aldwairi, Monther, Ansam M. Abu-Dalo, and Moath Jarrah. "Pattern
matching of signature-based IDS using Myers algorithm under
MapReduce framework." EURASIP Journal on Information Security
2017.1 (2017): 9.

[13] Jeong, Hae-Duck J., et al. "Anomaly teletraffic intrusion detection
systems on hadoop-based platforms: A survey of some problems and
solutions." Network-Based Information Systems (NBiS), 2012 15th
International Conference on. IEEE, 2012.

[14] Aljarah, Ibrahim, and Simone A. Ludwig. "Mapreduce intrusion
detection system based on a particle swarm optimization clustering
algorithm." Evolutionary Computation (CEC), 2013 IEEE Congress on.
IEEE, 2013.

[15] Yoshioka, Atsushi, Shariful Hasan Shaikot, and Min Sik Kim. "Rule
hashing for efficient packet classification in network intrusion
detection." Computer Communications and Networks, 2008. ICCCN'08.
Proceedings of 17th International Conference on. IEEE, 2008.

[16] Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

